Ragas项目中context_precision指标的正确使用方法
2025-05-26 21:25:23作者:贡沫苏Truman
背景介绍
在评估RAG(检索增强生成)系统时,Ragas作为一个开源的评估框架提供了多种指标来衡量系统性能。其中context_precision(上下文精确度)是一个重要指标,用于评估检索到的上下文与问题相关性的精确程度。
常见错误分析
许多开发者在初次使用Ragas的context_precision指标时会遇到一个典型错误:ValueError: The metric [context_precision] that that is used requires the following additional columns ['reference'] to be present in the dataset.。这个错误表明数据集缺少了必要的reference列。
问题根源
context_precision指标的工作原理是通过比较检索到的上下文(reference)与真实上下文(ground_truth)来计算精确度。因此它需要三个关键数据:
- 检索到的上下文(contexts)
- 真实上下文(ground_truths)
- 参考上下文(reference)
解决方案
正确的数据集结构应该包含以下字段:
{
"question": ["问题文本"],
"answer": ["生成的回答"],
"contexts": [["检索到的上下文列表"]],
"ground_truths": [["真实答案列表"]],
"reference": [["参考上下文列表"]]
}
实现示例
以下是正确使用context_precision指标的完整代码示例:
from datasets import Dataset
from ragas import evaluate
from ragas.metrics import context_precision
# 构建符合要求的数据集
data = {
"question": ["示例问题"],
"answer": ["生成的回答"],
"contexts": [[
"检索到的上下文1",
"检索到的上下文2"
]],
"ground_truths": [["真实答案"]],
"reference": [["参考上下文"]]
}
dataset = Dataset.from_dict(data)
# 评估
result = evaluate(
dataset,
metrics=[context_precision]
)
技术细节解析
context_precision指标的计算逻辑是:
- 将reference与ground_truth进行比对,确定哪些上下文是真正相关的
- 计算检索结果中相关上下文所占的比例
- 这个比例值就是context_precision的得分,范围在0到1之间
最佳实践建议
- 确保reference字段包含所有可能相关的上下文
- ground_truths应该是最准确的答案
- contexts字段应该包含实际检索系统返回的结果
- 对于批量评估,确保所有字段的长度一致
总结
正确使用Ragas的context_precision指标需要理解其底层评估逻辑,并准备符合要求的数据结构。通过提供完整的question、answer、contexts、ground_truths和reference字段,开发者可以准确评估RAG系统的检索精确度,从而优化系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19