Ragas项目中context_precision指标的正确使用方法
2025-05-26 19:01:54作者:贡沫苏Truman
背景介绍
在评估RAG(检索增强生成)系统时,Ragas作为一个开源的评估框架提供了多种指标来衡量系统性能。其中context_precision(上下文精确度)是一个重要指标,用于评估检索到的上下文与问题相关性的精确程度。
常见错误分析
许多开发者在初次使用Ragas的context_precision指标时会遇到一个典型错误:ValueError: The metric [context_precision] that that is used requires the following additional columns ['reference'] to be present in the dataset.。这个错误表明数据集缺少了必要的reference列。
问题根源
context_precision指标的工作原理是通过比较检索到的上下文(reference)与真实上下文(ground_truth)来计算精确度。因此它需要三个关键数据:
- 检索到的上下文(contexts)
- 真实上下文(ground_truths)
- 参考上下文(reference)
解决方案
正确的数据集结构应该包含以下字段:
{
"question": ["问题文本"],
"answer": ["生成的回答"],
"contexts": [["检索到的上下文列表"]],
"ground_truths": [["真实答案列表"]],
"reference": [["参考上下文列表"]]
}
实现示例
以下是正确使用context_precision指标的完整代码示例:
from datasets import Dataset
from ragas import evaluate
from ragas.metrics import context_precision
# 构建符合要求的数据集
data = {
"question": ["示例问题"],
"answer": ["生成的回答"],
"contexts": [[
"检索到的上下文1",
"检索到的上下文2"
]],
"ground_truths": [["真实答案"]],
"reference": [["参考上下文"]]
}
dataset = Dataset.from_dict(data)
# 评估
result = evaluate(
dataset,
metrics=[context_precision]
)
技术细节解析
context_precision指标的计算逻辑是:
- 将reference与ground_truth进行比对,确定哪些上下文是真正相关的
- 计算检索结果中相关上下文所占的比例
- 这个比例值就是context_precision的得分,范围在0到1之间
最佳实践建议
- 确保reference字段包含所有可能相关的上下文
- ground_truths应该是最准确的答案
- contexts字段应该包含实际检索系统返回的结果
- 对于批量评估,确保所有字段的长度一致
总结
正确使用Ragas的context_precision指标需要理解其底层评估逻辑,并准备符合要求的数据结构。通过提供完整的question、answer、contexts、ground_truths和reference字段,开发者可以准确评估RAG系统的检索精确度,从而优化系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443