Ragas项目中自定义LLM集成与评估实践指南
2025-05-26 07:01:17作者:滕妙奇
引言
在Ragas评估框架中,集成自定义语言模型(LLM)是许多开发者面临的实际需求。本文将详细介绍如何基于API参数(如api_path、URL、header等)构建自定义LLM包装器,并将其应用于Ragas的评估指标计算中。
自定义LLM实现方案
核心问题分析
Ragas框架要求LLM实现必须包含generate_text和agenerate_text两个核心方法,直接实例化BaseRagasLLM抽象类会导致TypeError。解决方案是创建自定义子类来实现这些抽象方法。
实现步骤详解
-
基础环境配置 首先需要设置API访问所需的环境变量和参数:
api_path = 'path' url_35 = f'{api_path}/v1.1/Chat/Completions' workspace_name = 'space_name' header = { "api-key": "api_key", "Content-Type": "application/json", 'workspaceName': workspace_name } -
API调用函数实现 构建基础的API调用函数,处理请求和响应:
import requests configuration_llm = 'llm' def get_response(configuration_llm, prompt_template, query): myobj = { 'messages': [ {'role': 'system', 'content': prompt_template}, {'role': 'user', 'content': query} ], 'model': configuration_llm, 'top_p': 0.5, 'temperature': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'max_tokens': 400, 'stream': False, 'stop': None, 'logitBias': None } response = requests.post(url_35, json=myobj, headers=header, verify=False) return response.json()['choices'][0]['message']['content'] -
自定义LLM类实现 继承
BaseRagasLLM并实现必要方法:from ragas.llms import BaseRagasLLM from ragas.llms.prompt import PromptValue from ragas.llms.base import LLMResult, Generation class CustomLLM(BaseRagasLLM): def generate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: response_text = get_response(self.model, prompt.prompt_str) generations = [[Generation(text=response_text)] * n] return LLMResult(generations=generations) async def agenerate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: return self.generate_text(prompt, n, temperature, stop, callbacks)
集成到Ragas评估流程
初始化配置
创建自定义LLM实例并进行包装:
from ragas.run_config import RunConfig
from ragas.llms import LangchainLLMWrapper
model = configuration_llm
run_config = RunConfig(timeout=30)
llm_instance = CustomLLM(
model=model,
run_config=run_config,
default_headers=header,
base_url=url_35
)
wrapped_llm = LangchainLLMWrapper(llm_instance)
评估指标设置
将包装后的LLM应用于Ragas评估指标:
from ragas.metrics import faithfulness, answer_relevancy, context_precision
metrics = [faithfulness, answer_relevancy, context_precision]
def init_ragas_metrics(metrics, llm, embedding):
for metric in metrics:
if isinstance(metric, MetricWithLLM):
metric.llm = llm
if isinstance(metric, MetricWithEmbeddings):
metric.embeddings = embedding
run_config = RunConfig()
metric.init(run_config)
init_ragas_metrics(
metrics,
llm=wrapped_llm,
embedding=your_embedding_instance
)
实际应用示例
评估函数实现
构建评估函数来计算各项指标:
async def evaluate_with_custom_llm(query, contexts, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": contexts, "answer": answer}
)
return scores
执行评估
使用自定义LLM进行实际评估:
import asyncio
# 示例数据
sample_data = {
"question": "什么是Ragas框架?",
"contexts": ["Ragas是一个用于评估检索增强生成系统的框架..."],
"answer": "Ragas是专门用于评估RAG系统的开源框架"
}
# 执行评估
results = asyncio.run(evaluate_with_custom_llm(**sample_data))
print(results)
最佳实践建议
- 错误处理增强:在自定义LLM实现中添加完善的错误处理机制,特别是对API调用失败的情况
- 性能优化:考虑实现请求批处理功能,提高评估效率
- 参数调优:根据评估结果调整LLM的参数配置,如temperature和max_tokens
- 异步优化:真正实现异步版本的agenerate_text方法,而非简单调用同步版本
- 日志记录:添加详细的日志记录,便于调试和性能分析
结语
通过本文介绍的方法,开发者可以灵活地将各种API-based LLM集成到Ragas评估框架中,实现对检索增强生成系统的全面评估。这种自定义集成方式不仅适用于文中的示例场景,也可以扩展到其他类似的评估需求中,为RAG系统的优化提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1