Ragas项目中自定义LLM集成与评估实践指南
2025-05-26 01:14:37作者:滕妙奇
引言
在Ragas评估框架中,集成自定义语言模型(LLM)是许多开发者面临的实际需求。本文将详细介绍如何基于API参数(如api_path、URL、header等)构建自定义LLM包装器,并将其应用于Ragas的评估指标计算中。
自定义LLM实现方案
核心问题分析
Ragas框架要求LLM实现必须包含generate_text和agenerate_text两个核心方法,直接实例化BaseRagasLLM抽象类会导致TypeError。解决方案是创建自定义子类来实现这些抽象方法。
实现步骤详解
-
基础环境配置 首先需要设置API访问所需的环境变量和参数:
api_path = 'path' url_35 = f'{api_path}/v1.1/Chat/Completions' workspace_name = 'space_name' header = { "api-key": "api_key", "Content-Type": "application/json", 'workspaceName': workspace_name } -
API调用函数实现 构建基础的API调用函数,处理请求和响应:
import requests configuration_llm = 'llm' def get_response(configuration_llm, prompt_template, query): myobj = { 'messages': [ {'role': 'system', 'content': prompt_template}, {'role': 'user', 'content': query} ], 'model': configuration_llm, 'top_p': 0.5, 'temperature': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'max_tokens': 400, 'stream': False, 'stop': None, 'logitBias': None } response = requests.post(url_35, json=myobj, headers=header, verify=False) return response.json()['choices'][0]['message']['content'] -
自定义LLM类实现 继承
BaseRagasLLM并实现必要方法:from ragas.llms import BaseRagasLLM from ragas.llms.prompt import PromptValue from ragas.llms.base import LLMResult, Generation class CustomLLM(BaseRagasLLM): def generate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: response_text = get_response(self.model, prompt.prompt_str) generations = [[Generation(text=response_text)] * n] return LLMResult(generations=generations) async def agenerate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: return self.generate_text(prompt, n, temperature, stop, callbacks)
集成到Ragas评估流程
初始化配置
创建自定义LLM实例并进行包装:
from ragas.run_config import RunConfig
from ragas.llms import LangchainLLMWrapper
model = configuration_llm
run_config = RunConfig(timeout=30)
llm_instance = CustomLLM(
model=model,
run_config=run_config,
default_headers=header,
base_url=url_35
)
wrapped_llm = LangchainLLMWrapper(llm_instance)
评估指标设置
将包装后的LLM应用于Ragas评估指标:
from ragas.metrics import faithfulness, answer_relevancy, context_precision
metrics = [faithfulness, answer_relevancy, context_precision]
def init_ragas_metrics(metrics, llm, embedding):
for metric in metrics:
if isinstance(metric, MetricWithLLM):
metric.llm = llm
if isinstance(metric, MetricWithEmbeddings):
metric.embeddings = embedding
run_config = RunConfig()
metric.init(run_config)
init_ragas_metrics(
metrics,
llm=wrapped_llm,
embedding=your_embedding_instance
)
实际应用示例
评估函数实现
构建评估函数来计算各项指标:
async def evaluate_with_custom_llm(query, contexts, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": contexts, "answer": answer}
)
return scores
执行评估
使用自定义LLM进行实际评估:
import asyncio
# 示例数据
sample_data = {
"question": "什么是Ragas框架?",
"contexts": ["Ragas是一个用于评估检索增强生成系统的框架..."],
"answer": "Ragas是专门用于评估RAG系统的开源框架"
}
# 执行评估
results = asyncio.run(evaluate_with_custom_llm(**sample_data))
print(results)
最佳实践建议
- 错误处理增强:在自定义LLM实现中添加完善的错误处理机制,特别是对API调用失败的情况
- 性能优化:考虑实现请求批处理功能,提高评估效率
- 参数调优:根据评估结果调整LLM的参数配置,如temperature和max_tokens
- 异步优化:真正实现异步版本的agenerate_text方法,而非简单调用同步版本
- 日志记录:添加详细的日志记录,便于调试和性能分析
结语
通过本文介绍的方法,开发者可以灵活地将各种API-based LLM集成到Ragas评估框架中,实现对检索增强生成系统的全面评估。这种自定义集成方式不仅适用于文中的示例场景,也可以扩展到其他类似的评估需求中,为RAG系统的优化提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130