Ragas项目中自定义LLM集成与评估实践指南
2025-05-26 16:38:18作者:滕妙奇
引言
在Ragas评估框架中,集成自定义语言模型(LLM)是许多开发者面临的实际需求。本文将详细介绍如何基于API参数(如api_path、URL、header等)构建自定义LLM包装器,并将其应用于Ragas的评估指标计算中。
自定义LLM实现方案
核心问题分析
Ragas框架要求LLM实现必须包含generate_text和agenerate_text两个核心方法,直接实例化BaseRagasLLM抽象类会导致TypeError。解决方案是创建自定义子类来实现这些抽象方法。
实现步骤详解
-
基础环境配置 首先需要设置API访问所需的环境变量和参数:
api_path = 'path' url_35 = f'{api_path}/v1.1/Chat/Completions' workspace_name = 'space_name' header = { "api-key": "api_key", "Content-Type": "application/json", 'workspaceName': workspace_name } -
API调用函数实现 构建基础的API调用函数,处理请求和响应:
import requests configuration_llm = 'llm' def get_response(configuration_llm, prompt_template, query): myobj = { 'messages': [ {'role': 'system', 'content': prompt_template}, {'role': 'user', 'content': query} ], 'model': configuration_llm, 'top_p': 0.5, 'temperature': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'max_tokens': 400, 'stream': False, 'stop': None, 'logitBias': None } response = requests.post(url_35, json=myobj, headers=header, verify=False) return response.json()['choices'][0]['message']['content'] -
自定义LLM类实现 继承
BaseRagasLLM并实现必要方法:from ragas.llms import BaseRagasLLM from ragas.llms.prompt import PromptValue from ragas.llms.base import LLMResult, Generation class CustomLLM(BaseRagasLLM): def generate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: response_text = get_response(self.model, prompt.prompt_str) generations = [[Generation(text=response_text)] * n] return LLMResult(generations=generations) async def agenerate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: return self.generate_text(prompt, n, temperature, stop, callbacks)
集成到Ragas评估流程
初始化配置
创建自定义LLM实例并进行包装:
from ragas.run_config import RunConfig
from ragas.llms import LangchainLLMWrapper
model = configuration_llm
run_config = RunConfig(timeout=30)
llm_instance = CustomLLM(
model=model,
run_config=run_config,
default_headers=header,
base_url=url_35
)
wrapped_llm = LangchainLLMWrapper(llm_instance)
评估指标设置
将包装后的LLM应用于Ragas评估指标:
from ragas.metrics import faithfulness, answer_relevancy, context_precision
metrics = [faithfulness, answer_relevancy, context_precision]
def init_ragas_metrics(metrics, llm, embedding):
for metric in metrics:
if isinstance(metric, MetricWithLLM):
metric.llm = llm
if isinstance(metric, MetricWithEmbeddings):
metric.embeddings = embedding
run_config = RunConfig()
metric.init(run_config)
init_ragas_metrics(
metrics,
llm=wrapped_llm,
embedding=your_embedding_instance
)
实际应用示例
评估函数实现
构建评估函数来计算各项指标:
async def evaluate_with_custom_llm(query, contexts, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": contexts, "answer": answer}
)
return scores
执行评估
使用自定义LLM进行实际评估:
import asyncio
# 示例数据
sample_data = {
"question": "什么是Ragas框架?",
"contexts": ["Ragas是一个用于评估检索增强生成系统的框架..."],
"answer": "Ragas是专门用于评估RAG系统的开源框架"
}
# 执行评估
results = asyncio.run(evaluate_with_custom_llm(**sample_data))
print(results)
最佳实践建议
- 错误处理增强:在自定义LLM实现中添加完善的错误处理机制,特别是对API调用失败的情况
- 性能优化:考虑实现请求批处理功能,提高评估效率
- 参数调优:根据评估结果调整LLM的参数配置,如temperature和max_tokens
- 异步优化:真正实现异步版本的agenerate_text方法,而非简单调用同步版本
- 日志记录:添加详细的日志记录,便于调试和性能分析
结语
通过本文介绍的方法,开发者可以灵活地将各种API-based LLM集成到Ragas评估框架中,实现对检索增强生成系统的全面评估。这种自定义集成方式不仅适用于文中的示例场景,也可以扩展到其他类似的评估需求中,为RAG系统的优化提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443