Ragas项目中自定义LLM集成与评估实践指南
2025-05-26 20:15:57作者:滕妙奇
引言
在Ragas评估框架中,集成自定义语言模型(LLM)是许多开发者面临的实际需求。本文将详细介绍如何基于API参数(如api_path、URL、header等)构建自定义LLM包装器,并将其应用于Ragas的评估指标计算中。
自定义LLM实现方案
核心问题分析
Ragas框架要求LLM实现必须包含generate_text
和agenerate_text
两个核心方法,直接实例化BaseRagasLLM
抽象类会导致TypeError。解决方案是创建自定义子类来实现这些抽象方法。
实现步骤详解
-
基础环境配置 首先需要设置API访问所需的环境变量和参数:
api_path = 'path' url_35 = f'{api_path}/v1.1/Chat/Completions' workspace_name = 'space_name' header = { "api-key": "api_key", "Content-Type": "application/json", 'workspaceName': workspace_name }
-
API调用函数实现 构建基础的API调用函数,处理请求和响应:
import requests configuration_llm = 'llm' def get_response(configuration_llm, prompt_template, query): myobj = { 'messages': [ {'role': 'system', 'content': prompt_template}, {'role': 'user', 'content': query} ], 'model': configuration_llm, 'top_p': 0.5, 'temperature': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'max_tokens': 400, 'stream': False, 'stop': None, 'logitBias': None } response = requests.post(url_35, json=myobj, headers=header, verify=False) return response.json()['choices'][0]['message']['content']
-
自定义LLM类实现 继承
BaseRagasLLM
并实现必要方法:from ragas.llms import BaseRagasLLM from ragas.llms.prompt import PromptValue from ragas.llms.base import LLMResult, Generation class CustomLLM(BaseRagasLLM): def generate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: response_text = get_response(self.model, prompt.prompt_str) generations = [[Generation(text=response_text)] * n] return LLMResult(generations=generations) async def agenerate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: return self.generate_text(prompt, n, temperature, stop, callbacks)
集成到Ragas评估流程
初始化配置
创建自定义LLM实例并进行包装:
from ragas.run_config import RunConfig
from ragas.llms import LangchainLLMWrapper
model = configuration_llm
run_config = RunConfig(timeout=30)
llm_instance = CustomLLM(
model=model,
run_config=run_config,
default_headers=header,
base_url=url_35
)
wrapped_llm = LangchainLLMWrapper(llm_instance)
评估指标设置
将包装后的LLM应用于Ragas评估指标:
from ragas.metrics import faithfulness, answer_relevancy, context_precision
metrics = [faithfulness, answer_relevancy, context_precision]
def init_ragas_metrics(metrics, llm, embedding):
for metric in metrics:
if isinstance(metric, MetricWithLLM):
metric.llm = llm
if isinstance(metric, MetricWithEmbeddings):
metric.embeddings = embedding
run_config = RunConfig()
metric.init(run_config)
init_ragas_metrics(
metrics,
llm=wrapped_llm,
embedding=your_embedding_instance
)
实际应用示例
评估函数实现
构建评估函数来计算各项指标:
async def evaluate_with_custom_llm(query, contexts, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": contexts, "answer": answer}
)
return scores
执行评估
使用自定义LLM进行实际评估:
import asyncio
# 示例数据
sample_data = {
"question": "什么是Ragas框架?",
"contexts": ["Ragas是一个用于评估检索增强生成系统的框架..."],
"answer": "Ragas是专门用于评估RAG系统的开源框架"
}
# 执行评估
results = asyncio.run(evaluate_with_custom_llm(**sample_data))
print(results)
最佳实践建议
- 错误处理增强:在自定义LLM实现中添加完善的错误处理机制,特别是对API调用失败的情况
- 性能优化:考虑实现请求批处理功能,提高评估效率
- 参数调优:根据评估结果调整LLM的参数配置,如temperature和max_tokens
- 异步优化:真正实现异步版本的agenerate_text方法,而非简单调用同步版本
- 日志记录:添加详细的日志记录,便于调试和性能分析
结语
通过本文介绍的方法,开发者可以灵活地将各种API-based LLM集成到Ragas评估框架中,实现对检索增强生成系统的全面评估。这种自定义集成方式不仅适用于文中的示例场景,也可以扩展到其他类似的评估需求中,为RAG系统的优化提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
193
2.16 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
972
573

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
77

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
206
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17