Ragas项目中自定义LLM集成与评估实践指南
2025-05-26 20:15:57作者:滕妙奇
引言
在Ragas评估框架中,集成自定义语言模型(LLM)是许多开发者面临的实际需求。本文将详细介绍如何基于API参数(如api_path、URL、header等)构建自定义LLM包装器,并将其应用于Ragas的评估指标计算中。
自定义LLM实现方案
核心问题分析
Ragas框架要求LLM实现必须包含generate_text
和agenerate_text
两个核心方法,直接实例化BaseRagasLLM
抽象类会导致TypeError。解决方案是创建自定义子类来实现这些抽象方法。
实现步骤详解
-
基础环境配置 首先需要设置API访问所需的环境变量和参数:
api_path = 'path' url_35 = f'{api_path}/v1.1/Chat/Completions' workspace_name = 'space_name' header = { "api-key": "api_key", "Content-Type": "application/json", 'workspaceName': workspace_name }
-
API调用函数实现 构建基础的API调用函数,处理请求和响应:
import requests configuration_llm = 'llm' def get_response(configuration_llm, prompt_template, query): myobj = { 'messages': [ {'role': 'system', 'content': prompt_template}, {'role': 'user', 'content': query} ], 'model': configuration_llm, 'top_p': 0.5, 'temperature': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'max_tokens': 400, 'stream': False, 'stop': None, 'logitBias': None } response = requests.post(url_35, json=myobj, headers=header, verify=False) return response.json()['choices'][0]['message']['content']
-
自定义LLM类实现 继承
BaseRagasLLM
并实现必要方法:from ragas.llms import BaseRagasLLM from ragas.llms.prompt import PromptValue from ragas.llms.base import LLMResult, Generation class CustomLLM(BaseRagasLLM): def generate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: response_text = get_response(self.model, prompt.prompt_str) generations = [[Generation(text=response_text)] * n] return LLMResult(generations=generations) async def agenerate_text(self, prompt: PromptValue, n=1, temperature=1.0, stop=None, callbacks=None) -> LLMResult: return self.generate_text(prompt, n, temperature, stop, callbacks)
集成到Ragas评估流程
初始化配置
创建自定义LLM实例并进行包装:
from ragas.run_config import RunConfig
from ragas.llms import LangchainLLMWrapper
model = configuration_llm
run_config = RunConfig(timeout=30)
llm_instance = CustomLLM(
model=model,
run_config=run_config,
default_headers=header,
base_url=url_35
)
wrapped_llm = LangchainLLMWrapper(llm_instance)
评估指标设置
将包装后的LLM应用于Ragas评估指标:
from ragas.metrics import faithfulness, answer_relevancy, context_precision
metrics = [faithfulness, answer_relevancy, context_precision]
def init_ragas_metrics(metrics, llm, embedding):
for metric in metrics:
if isinstance(metric, MetricWithLLM):
metric.llm = llm
if isinstance(metric, MetricWithEmbeddings):
metric.embeddings = embedding
run_config = RunConfig()
metric.init(run_config)
init_ragas_metrics(
metrics,
llm=wrapped_llm,
embedding=your_embedding_instance
)
实际应用示例
评估函数实现
构建评估函数来计算各项指标:
async def evaluate_with_custom_llm(query, contexts, answer):
scores = {}
for metric in metrics:
scores[metric.name] = await metric.ascore(
row={"question": query, "contexts": contexts, "answer": answer}
)
return scores
执行评估
使用自定义LLM进行实际评估:
import asyncio
# 示例数据
sample_data = {
"question": "什么是Ragas框架?",
"contexts": ["Ragas是一个用于评估检索增强生成系统的框架..."],
"answer": "Ragas是专门用于评估RAG系统的开源框架"
}
# 执行评估
results = asyncio.run(evaluate_with_custom_llm(**sample_data))
print(results)
最佳实践建议
- 错误处理增强:在自定义LLM实现中添加完善的错误处理机制,特别是对API调用失败的情况
- 性能优化:考虑实现请求批处理功能,提高评估效率
- 参数调优:根据评估结果调整LLM的参数配置,如temperature和max_tokens
- 异步优化:真正实现异步版本的agenerate_text方法,而非简单调用同步版本
- 日志记录:添加详细的日志记录,便于调试和性能分析
结语
通过本文介绍的方法,开发者可以灵活地将各种API-based LLM集成到Ragas评估框架中,实现对检索增强生成系统的全面评估。这种自定义集成方式不仅适用于文中的示例场景,也可以扩展到其他类似的评估需求中,为RAG系统的优化提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8