Higress项目中ai-transformer插件的编译与使用指南
背景介绍
Higress是阿里巴巴开源的一款高性能云原生网关,其ai-transformer插件是一个基于WASM(WebAssembly)技术实现的AI请求转换器。该插件能够对HTTP请求进行智能转换处理,通过与AI服务交互实现请求内容的自动转换功能。
核心功能解析
ai-transformer插件的主要功能是在HTTP请求处理过程中,将原始请求内容通过AI服务进行转换处理。其核心处理逻辑位于OnHttpRequestBody方法中,该方法是WASM插件处理HTTP请求体的关键入口。
关键技术点
-
请求头获取的特殊处理:在标准proxy-wasm规范中,GetHttpRequestHeaders方法只能在OnHttpRequestHeaders和OnHttpStreamDone阶段调用。但Higress通过扩展proxy-wasm ABI,允许在请求体处理阶段也能获取请求头信息。
-
AI服务集成:插件通过配置的API Key与AI服务进行交互,将原始请求内容和请求头信息组合后发送给AI服务,获取转换后的结果。
-
请求内容替换:插件能够将AI服务返回的转换结果替换原始请求内容和头信息,实现请求的智能转换。
编译注意事项
编译ai-transformer插件时需要特别注意以下几点:
-
特殊编译标签:必须使用
proxy_wasm_version_0_2_100
标签进行编译,这是Higress扩展proxy-wasm ABI的关键标识。 -
推荐编译方式:
- 使用项目提供的Makefile进行编译:
PLUGIN_NAME=ai-transformer EXTRA_TAGS=proxy_wasm_version_0_2_100 make build
- 或者直接使用TinyGo编译器:
tinygo build -o main.wasm -scheduler=none -target=wasi -gc=custom -tags='custommalloc nottinygc_finalizer proxy_wasm_version_0_2_100' ./extensions/ai-transformer/main.go
- 使用项目提供的Makefile进行编译:
-
内存管理配置:编译时需要指定自定义的内存分配器(-gc=custom)并禁用TinyGo的终结器(nottinygc_finalizer),这是WASM环境下的特殊要求。
常见问题解决方案
如果在使用过程中遇到"Failed to get http response headers"错误,通常是由于以下原因:
-
未使用正确的编译标签进行编译,导致无法使用Higress扩展的proxy-wasm ABI功能。
-
尝试在标准proxy-wasm环境下运行插件,而该环境不支持在请求体处理阶段获取请求头。
解决方案是确保使用上述提到的特殊编译标签重新编译插件,并在Higress环境中运行。
最佳实践建议
-
性能考虑:AI转换操作可能会引入额外延迟,建议合理设置超时时间(如示例中的50000毫秒)。
-
错误处理:在生产环境中,应增强错误处理逻辑,包括重试机制和降级策略。
-
安全考虑:确保API Key的安全存储和传输,避免敏感信息泄露。
通过正确编译和配置ai-transformer插件,开发者可以在Higress网关上实现强大的AI驱动请求转换功能,为现代应用架构提供更智能的流量处理能力。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0111DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









