AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像
AWS Deep Learning Containers是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,为开发者提供了开箱即用的深度学习训练和推理环境。这些容器镜像经过AWS优化,能够充分发挥云端计算资源的性能优势。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.6.0框架的新版本训练镜像,支持Python 3.12环境。此次更新包含CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。
镜像版本特性
本次发布的PyTorch训练镜像主要有以下技术特性:
-
PyTorch 2.6.0核心框架:提供了最新的PyTorch深度学习框架,包含最新的性能优化和功能改进。
-
Python 3.12支持:镜像内置Python 3.12环境,开发者可以使用最新的Python语言特性。
-
CUDA 12.6支持(GPU版本):GPU版本镜像基于CUDA 12.6工具包构建,支持NVIDIA最新GPU架构。
-
Ubuntu 22.04基础:所有镜像均基于Ubuntu 22.04 LTS操作系统,提供稳定的运行环境。
镜像内容详解
CPU版本镜像
CPU版本镜像适用于不需要GPU加速的训练场景,主要包含以下重要组件:
- 核心科学计算库:NumPy 2.2.3、SciPy 1.15.2等科学计算基础库
- 计算机视觉支持:OpenCV 4.11.0和Pillow 11.1.0图像处理库
- 自然语言处理:spaCy 3.8.4 NLP库
- AWS工具集成:boto3 1.37.8、awscli 1.38.8等AWS SDK
- 并行计算支持:mpi4py 4.0.3 MPI接口
GPU版本镜像
GPU版本镜像在CPU版本基础上增加了对NVIDIA GPU的支持,额外包含:
- CUDA 12.6工具链:完整的CUDA开发环境
- cuDNN加速库:深度神经网络加速库
- NCCL通信库:多GPU通信优化
- GPU版PyTorch:torch 2.6.0+cu126等GPU加速版本
技术选型建议
对于不同场景的开发者,可以根据以下建议选择合适版本:
-
原型开发和小规模训练:建议使用CPU版本,无需GPU资源即可快速验证模型结构。
-
大规模深度学习训练:推荐使用GPU版本,充分利用NVIDIA GPU的并行计算能力加速训练过程。
-
生产环境部署:建议基于这些镜像构建自定义容器,确保环境一致性和可重复性。
这些预构建的容器镜像大大简化了深度学习环境的搭建过程,开发者可以专注于模型开发而非环境配置。同时,AWS的优化确保了在EC2实例上能够获得最佳性能表现。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00