首页
/ AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像

AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像

2025-07-06 22:58:44作者:滕妙奇

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,让开发者能够快速部署和运行深度学习工作负载,而无需花费大量时间在环境配置上。

近日,AWS发布了PyTorch 2.6.0版本的训练镜像,支持Python 3.12环境,为机器学习开发者提供了最新的PyTorch框架支持。这些镜像针对EC2实例进行了优化,包含CPU和GPU两个版本,分别适用于不同的计算需求场景。

镜像版本详情

此次发布的PyTorch训练镜像包含两个主要版本:

  1. CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CPU版本及其相关依赖。这个版本适合不需要GPU加速的训练任务,或者在没有GPU资源的开发环境中使用。

  2. GPU版本:同样基于Ubuntu 22.04系统,但预装了支持CUDA 12.6的PyTorch 2.6.0 GPU版本,以及相应的CUDA工具包和cuDNN库。这个版本能够充分利用NVIDIA GPU的并行计算能力,显著加速深度学习模型的训练过程。

关键特性与预装组件

这两个镜像都预装了丰富的Python包和系统工具,为深度学习开发提供了全面的支持:

  • 核心框架:PyTorch 2.6.0、TorchVision 0.21.0和TorchAudio 2.6.0
  • 科学计算库:NumPy 2.2.3、SciPy 1.15.2
  • 图像处理:OpenCV 4.11.0、Pillow 11.1.0
  • 自然语言处理:spaCy 3.8.4
  • 并行计算:MPI4py 4.0.3(用于分布式训练)
  • 开发工具:Cython 3.0.12、pybind11 2.13.6
  • AWS集成:boto3 1.37.8、awscli 1.38.8

GPU版本额外包含了NVIDIA CUDA 12.6工具链和cuDNN库,确保能够充分发挥GPU的计算潜力。同时,两个版本都预装了Intel MKL数学核心库,优化了CPU上的矩阵运算性能。

使用场景与优势

AWS Deep Learning Containers的这些PyTorch镜像特别适合以下场景:

  1. 快速原型开发:开发者可以直接使用这些预配置的镜像,省去了繁琐的环境搭建过程,专注于模型设计和算法实现。

  2. 大规模训练任务:在EC2实例上部署这些镜像,可以轻松扩展到多GPU甚至多节点的分布式训练场景。

  3. 教学与实验:教育工作者和学生可以使用这些标准化的环境,确保实验环境的一致性。

  4. 生产部署:这些经过AWS优化的镜像具有更好的稳定性和性能表现,适合生产环境使用。

总结

AWS持续更新其Deep Learning Containers,保持与主流深度学习框架最新版本的同步。这次发布的PyTorch 2.6.0镜像不仅提供了框架的最新功能,还针对EC2环境进行了专门优化,是PyTorch开发者值得考虑的高效工具。无论是进行小规模实验还是大规模生产训练,这些预配置的容器都能显著降低环境配置的复杂度,让开发者更专注于模型本身。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133