AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,可直接在AWS云平台上运行。DLC包含了主流深度学习框架的最新版本,预装了必要的依赖库和工具,大大简化了深度学习环境的搭建过程。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.6.0框架的训练镜像更新。这次更新主要针对PyTorch 2.6.0版本,提供了Python 3.12环境支持,并适配了最新的CUDA 12.6工具包。
镜像版本概览
本次发布的DLC镜像包含两个主要版本:
-
CPU版本:基于Ubuntu 22.04操作系统,预装了PyTorch 2.6.0的CPU版本,适用于不需要GPU加速的训练场景。
-
GPU版本:同样基于Ubuntu 22.04,但预装了PyTorch 2.6.0的CUDA 12.6版本,支持NVIDIA GPU加速计算。
这两个版本都预装了Python 3.12环境,并包含了SageMaker相关的工具包,方便用户在AWS SageMaker平台上直接使用。
关键软件包版本
在深度学习项目中,软件包的版本兼容性至关重要。本次发布的DLC镜像中包含了以下重要软件包的特定版本:
-
PyTorch核心组件:
- torch==2.6.0(CPU/CUDA 12.6版本)
- torchvision==0.21.0
- torchaudio==2.6.0
-
数据处理与科学计算:
- numpy==1.26.4
- pandas==2.3.0
- scikit-learn==1.7.0
- scipy==1.16.0
-
AWS相关工具:
- sagemaker==2.247.1
- boto3==1.38.41
- awscli==1.40.40
-
其他实用工具:
- opencv-python==4.11.0.86
- pillow==11.2.1
- mkl==2025.1.0
技术特点与优势
-
预配置环境:这些镜像已经预先配置好了深度学习训练所需的所有依赖项,用户无需花费时间在环境搭建上,可以直接开始模型开发。
-
版本兼容性保证:AWS团队已经测试了所有预装软件包的兼容性,避免了用户自行安装时可能遇到的版本冲突问题。
-
SageMaker集成:镜像中预装了SageMaker SDK和相关工具,方便用户在AWS SageMaker平台上无缝使用。
-
性能优化:针对AWS基础设施进行了优化,能够充分发挥AWS计算资源的性能潜力。
-
安全更新:基于Ubuntu 22.04 LTS,包含了最新的安全补丁和系统更新。
适用场景
这些PyTorch训练镜像特别适合以下场景:
- 需要快速启动PyTorch项目的开发者
- 在AWS平台上进行大规模深度学习训练的研究团队
- 需要稳定、可重复实验环境的机器学习工程师
- 希望避免环境配置复杂性的数据科学团队
总结
AWS Deep Learning Containers提供的这些PyTorch 2.6.0训练镜像,为深度学习开发者提供了开箱即用的解决方案。通过使用这些预配置的容器镜像,开发者可以节省大量环境配置时间,专注于模型开发和训练本身。特别是对于在AWS云平台上工作的团队,这些镜像提供了与AWS服务无缝集成的优势,是进行高效深度学习开发的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00