AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像
2025-07-06 02:47:14作者:廉皓灿Ida
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化并预装了常用的深度学习框架和工具。最新发布的v1.4版本主要针对PyTorch 2.6.0框架进行了更新,为开发者提供了更高效的训练环境。
镜像版本概览
本次发布包含两个主要镜像版本,分别针对CPU和GPU训练场景进行了优化:
-
CPU版本:基于Ubuntu 22.04系统,预装了Python 3.12环境和PyTorch 2.6.0 CPU版本。该镜像适合不需要GPU加速的训练任务,或者在没有GPU资源的开发环境中使用。
-
GPU版本:同样基于Ubuntu 22.04系统,预装了Python 3.12环境,但集成了CUDA 12.6工具链和PyTorch 2.6.0 GPU版本(cu126)。这个版本针对NVIDIA GPU进行了优化,能够充分利用GPU的并行计算能力加速训练过程。
关键软件包更新
两个镜像都包含了机器学习开发中常用的核心软件包:
- PyTorch生态:torch 2.6.0、torchvision 0.21.0和torchaudio 2.6.0,这三个包构成了PyTorch的核心功能栈。
- 数据处理:numpy 1.26.4、pandas 2.2.3和scipy 1.15.2提供了强大的数值计算和数据处理能力。
- 计算机视觉:opencv-python 4.11.0和pillow 11.1.0支持图像处理和计算机视觉任务。
- AWS工具链:boto3 1.37.8、awscli 1.38.8和sagemaker 2.241.0等包提供了与AWS云服务的深度集成。
- 其他实用工具:包括scikit-learn 1.6.1、spacy 3.8.4等机器学习工具,以及protobuf、Cython等基础组件。
系统级优化
在底层系统层面,这些镜像也进行了多项优化:
- 编译器支持:集成了GCC 11工具链,包括libgcc-11-dev和libstdc++-11-dev,为高性能计算提供了良好的基础。
- CUDA支持:GPU版本完整集成了CUDA 12.6工具包,包括cuBLAS、cuDNN等加速库,确保GPU计算性能最大化。
- 开发工具:预装了emacs等开发工具,方便开发者直接在容器内进行代码编辑和调试。
使用场景建议
这些预构建的DLC镜像特别适合以下场景:
- 快速实验原型开发:开发者可以直接使用这些镜像,省去复杂的环境配置过程,快速开始模型训练。
- 生产环境部署:由于镜像已经过AWS的优化和测试,可以直接用于生产环境的模型训练任务。
- 教学和研究:统一的开发环境便于团队协作和知识共享,减少环境差异导致的问题。
版本兼容性考虑
需要注意的是,本次发布的镜像基于PyTorch 2.6.0版本,开发者在使用时应注意:
- 检查自己的模型代码是否与PyTorch 2.6.0兼容
- 评估CUDA 12.6是否与硬件驱动兼容(针对GPU版本)
- Python 3.12可能带来一些语法变化,需要检查现有代码
总的来说,AWS Deep Learning Containers的这次更新为PyTorch开发者提供了更现代化、更高效的训练环境,能够显著降低环境配置的复杂度,让开发者更专注于模型本身的设计和优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 操作系统概念第六版PDF资源全面指南:适用场景与使用教程
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137