AWS Deep Learning Containers发布PyTorch 2.6.0训练镜像
2025-07-06 06:23:10作者:廉皓灿Ida
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化并预装了常用的深度学习框架和工具。最新发布的v1.4版本主要针对PyTorch 2.6.0框架进行了更新,为开发者提供了更高效的训练环境。
镜像版本概览
本次发布包含两个主要镜像版本,分别针对CPU和GPU训练场景进行了优化:
-
CPU版本:基于Ubuntu 22.04系统,预装了Python 3.12环境和PyTorch 2.6.0 CPU版本。该镜像适合不需要GPU加速的训练任务,或者在没有GPU资源的开发环境中使用。
-
GPU版本:同样基于Ubuntu 22.04系统,预装了Python 3.12环境,但集成了CUDA 12.6工具链和PyTorch 2.6.0 GPU版本(cu126)。这个版本针对NVIDIA GPU进行了优化,能够充分利用GPU的并行计算能力加速训练过程。
关键软件包更新
两个镜像都包含了机器学习开发中常用的核心软件包:
- PyTorch生态:torch 2.6.0、torchvision 0.21.0和torchaudio 2.6.0,这三个包构成了PyTorch的核心功能栈。
- 数据处理:numpy 1.26.4、pandas 2.2.3和scipy 1.15.2提供了强大的数值计算和数据处理能力。
- 计算机视觉:opencv-python 4.11.0和pillow 11.1.0支持图像处理和计算机视觉任务。
- AWS工具链:boto3 1.37.8、awscli 1.38.8和sagemaker 2.241.0等包提供了与AWS云服务的深度集成。
- 其他实用工具:包括scikit-learn 1.6.1、spacy 3.8.4等机器学习工具,以及protobuf、Cython等基础组件。
系统级优化
在底层系统层面,这些镜像也进行了多项优化:
- 编译器支持:集成了GCC 11工具链,包括libgcc-11-dev和libstdc++-11-dev,为高性能计算提供了良好的基础。
- CUDA支持:GPU版本完整集成了CUDA 12.6工具包,包括cuBLAS、cuDNN等加速库,确保GPU计算性能最大化。
- 开发工具:预装了emacs等开发工具,方便开发者直接在容器内进行代码编辑和调试。
使用场景建议
这些预构建的DLC镜像特别适合以下场景:
- 快速实验原型开发:开发者可以直接使用这些镜像,省去复杂的环境配置过程,快速开始模型训练。
- 生产环境部署:由于镜像已经过AWS的优化和测试,可以直接用于生产环境的模型训练任务。
- 教学和研究:统一的开发环境便于团队协作和知识共享,减少环境差异导致的问题。
版本兼容性考虑
需要注意的是,本次发布的镜像基于PyTorch 2.6.0版本,开发者在使用时应注意:
- 检查自己的模型代码是否与PyTorch 2.6.0兼容
- 评估CUDA 12.6是否与硬件驱动兼容(针对GPU版本)
- Python 3.12可能带来一些语法变化,需要检查现有代码
总的来说,AWS Deep Learning Containers的这次更新为PyTorch开发者提供了更现代化、更高效的训练环境,能够显著降低环境配置的复杂度,让开发者更专注于模型本身的设计和优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
macOS安装python3.8:轻松掌握Python环境配置【亲测免费】 YOLOv8系列--AI自瞄项目:实现高效目标检测的利器 BT1120规范资源下载介绍:数字视频信号传输的关键标准 探索renren-fast2.1与renren-security3.2:轻量级权限管理系统的卓越之选 商用车智能底盘技术路线图 Linux服务器TDSQL单机安装指南:轻松部署高效数据库 SAP中文标准教材汇总资源下载说明 AUTOSAR_SWS_E2ELibrary资源文件介绍:汽车行业E2E通信标准化解决方案 H3CUIS-Cell3000系列超融合一体机用户指南:超融合解决方案,轻松管理企业数据中心 owl2neo4j:轻松将OWL数据导入Neo4J,释放本体数据的潜力
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134