首页
/ **探索Unary-Pairwise Transformers(UPT): 高效的两阶段人类物体互动检测**

**探索Unary-Pairwise Transformers(UPT): 高效的两阶段人类物体互动检测**

2024-06-14 11:17:07作者:明树来

在快速发展的计算机视觉领域中,针对人类与物体间的交互识别(Human-Object Interaction, HOI)研究正日益受到关注。在这一背景下,Unary-Pairwise Transformers(简称UPT)应运而生,凭借其高效且精准的人类物体互动检测功能,在学术和应用层面均展现出非凡潜力。

项目简介

UPT是一项基于PyTorch框架实现的新颖深度学习模型,专为解决人类与物体互动(HOI)检测问题设计。这项由Fredric Z. Zhang等人于2022年发表的研究成果,以其高效的两阶段检测方法脱颖而出,并在HICO-DET与V-COCO数据集上实现了显著优于现有技术的性能。

项目技术分析

核心创新点:Unary-Pairwise架构

UPT核心在于采用了一种独特的Unary-Pairwise架构,该架构将传统的HOI检测任务分为两个阶段进行处理:

  1. Unary阶段:专注于单个对象或主体的特征提取。
  2. Pairwise阶段:则聚焦于构建对象对之间的相互关系表示。

通过这种精细分工的方式,UPT能够在提高检测准确度的同时,保证了计算效率,实现了训练时间的有效缩短。

技术亮点:Transformer网络优化

UPT利用Transformer网络的强大表示能力,特别是改进后的Unary-Pairwise Transformer,能够更有效地捕捉人类动作与相关物体之间的复杂关联性。网络中的单元和配对部分显示出特化行为,单元组件倾向于提升正面示例得分,而配对组件负责降低负面示例评分。

项目及技术应用场景

UPT的应用场景广泛,覆盖了从智能监控到人机协作等多种领域,如以下实例:

  • 在公共安全视频监控中,实时分析并理解人类活动与环境物体质的动态交互,有助于预防犯罪和社会治安维护。
  • 自动驾驶车辆视野内的人类行为解析,能辅助车辆做出更为智能和安全的行驶决策。

项目特点

实时性能与资源节省

UPT以ResNet50为基础的模型,在单GPU配置下接近实时运行速度,推断时间低至0.04秒,展现了卓越的时间效率与计算成本控制。

状态级性能超越

在HICO-DET和V-COCO两大行业标准测试集上的表现证明,UPT不仅在精度上超过了现有的领先方案,而且在资源消耗方面也更具优势,成为新一代HOI检测领域的标杆。

综上所述,Unary-Pairwise Transformers(UPT)作为一项前沿的技术成果,不仅展示了计算机视觉领域最新的算法突破,还预示着在实际应用场景下的无限可能。对于追求高性能、低延迟和高效资源利用的专业人士而言,UPT无疑是一个值得深入研究和实践的优秀选择。无论是在科研还是工程实践中,UPT都将是一股不可忽视的力量,引领着未来人类-物体互动检测的发展方向。


如果你对计算机视觉有着浓厚的兴趣,或是寻求提高系统中HOI检测效率和准确性,请不要错过UPT这个强大的工具。立即加入我们的社区,开始你的探索之旅!

探索Unary-Pairwise Transformers(UPT),释放计算机视觉的无限潜能!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5