neurolib 项目教程
2024-09-25 20:25:38作者:宗隆裙
1. 项目介绍
neurolib 是一个用于全脑建模的仿真和优化框架。它允许用户实现自己的神经质量模型,这些模型可以模拟功能性磁共振成像(fMRI)的BOLD活动。neurolib 帮助用户分析仿真结果,加载和处理结构性和功能性脑数据,并使用强大的进化算法来调整模型的参数,以拟合经验数据。
主要功能
- 神经质量模型:支持多种神经质量模型,用于模拟每个脑区的活动。
- 数据处理:加载和处理结构性和功能性脑数据。
- 参数优化:使用进化算法优化模型参数。
- 仿真分析:分析仿真结果,并与经验数据进行比较。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后,使用 pip 安装 neurolib:
pip install neurolib
快速启动示例
以下是一个简单的示例,展示如何使用 neurolib 创建一个单节点模型并运行仿真:
from neurolib.models.aln import ALNModel
import matplotlib.pyplot as plt
# 创建一个 ALN 模型
model = ALNModel()
# 设置一些参数
model.params['sigma_ou'] = 0.1 # 添加一些噪声
# 运行仿真
model.run()
# 绘制结果
plt.plot(model.t, model.output[:, 0])
plt.xlabel('Time [ms]')
plt.ylabel('Activity')
plt.show()
3. 应用案例和最佳实践
应用案例
全脑网络仿真
以下是一个全脑网络仿真的示例,展示如何加载数据集并运行仿真:
from neurolib.utils.loadData import Dataset
from neurolib.models.aln import ALNModel
# 加载示例数据集
ds = Dataset("gw")
# 初始化模型
model = ALNModel(Cmat=ds.Cmat, Dmat=ds.Dmat)
# 设置仿真时长
model.params['duration'] = 5 * 60 * 1000 # 5 分钟
# 运行仿真
model.run(bold=True)
# 分析结果
from neurolib.utils.functions import func_fc, matrix_correlation
sim_fc = func_fc(model.BOLD.BOLD)
emp_fc = ds.FC
fit = matrix_correlation(sim_fc, emp_fc)
print(f"Fit quality: {fit}")
最佳实践
- 参数优化:使用进化算法优化模型参数,以提高仿真结果的准确性。
- 数据预处理:在加载数据集后,进行必要的预处理,以确保数据的准确性和一致性。
- 结果分析:使用 neurolib 提供的分析工具,对仿真结果进行深入分析,并与经验数据进行比较。
4. 典型生态项目
相关项目
- Brain2:一个用于脑网络建模的开源工具包,与 neurolib 有相似的功能。
- Nilearn:一个用于处理和分析 fMRI 数据的 Python 库,可以与 neurolib 结合使用,进行数据预处理和结果分析。
- PyTorch:一个深度学习框架,可以用于开发更复杂的神经网络模型,并与 neurolib 结合使用,进行更高级的仿真和优化。
通过这些生态项目,用户可以进一步扩展 neurolib 的功能,实现更复杂的脑网络建模和分析任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 正点原子串口调试助手 XCOM V2.6 下载【亲测免费】 探索数学之美:Mathlib4 - Lean 数学库【亲测免费】 flat: 创建扁平的 SVG 图像【亲测免费】 METIS:高效数据分割与图划分工具DreamCraft3D终极指南:如何用AI快速生成惊艳3D模型【亲测免费】 AnySoftKeyboard: 自定义键盘的开源解决方案终极指南:如何快速上手NettyChat实时聊天应用开发 🚀【亲测免费】 高速哈希算法:Google的HighwayHash简介 推荐一款高效Android开发工具:Fat-AAR Gentelella Bootstrap 4 行政仪表板模板教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19