PML-Book中泛化误差估计公式的修正与解析
2025-06-08 04:01:19作者:邓越浪Henry
在机器学习模型评估过程中,准确估计模型的泛化误差是至关重要的。近期,概率机器学习经典教材PML-Book对泛化误差估计公式进行了重要修正,这一改动不仅纠正了原有公式的符号问题,更准确地区分了训练误差和测试误差的关系。
原公式存在的问题
原书中公式5.84试图表达模型在训练集和测试集上表现的差异,即泛化误差。然而该公式存在两个主要问题:
- 符号方向错误:测试误差通常高于训练误差,导致原公式右侧计算结果为负值,这与泛化误差应为正值的直观理解相矛盾
- 概念定义不准确:原公式将"泛化误差"定义为真实风险与最优风险之差,但实际应用中更关注的是训练风险与真实风险的差异
修正后的公式体系
经过修正后,书中现在明确定义了三个关键概念:
- 训练误差:模型在训练集上的平均损失
- 测试误差:模型在独立测试集上的平均损失
- 泛化误差:训练误差与真实风险(期望风险)之差
修正后的公式体系更清晰地表达了这些概念之间的关系:
泛化误差 = 训练误差 - 真实风险
估计的泛化误差 ≈ 训练误差 - 测试误差
理论意义与实践价值
这一修正具有重要的理论和实践意义:
- 概念清晰化:明确区分了真实风险(不可观测)和测试误差(可观测)的不同
- 估计合理性:确保泛化误差估计值为正,符合"训练误差通常低于真实风险"的认知
- 模型评估:为实际应用中评估模型过拟合程度提供了更准确的数学表达
在实际机器学习项目中,这一修正帮助从业者更准确地:
- 评估模型在未知数据上的表现
- 判断模型是否存在过拟合
- 比较不同模型的泛化能力
对机器学习实践的影响
理解泛化误差的正确计算方式对机器学习实践有深远影响:
- 模型选择:基于准确的泛化误差估计,可以选择真正具有良好泛化能力的模型
- 正则化调整:通过观察泛化误差的变化,可以更合理地调整正则化强度
- 早停策略:在训练过程中监控泛化误差估计,可以确定最佳停止训练时机
这一修正体现了机器学习理论研究中概念精确化的重要性,也为实践中的模型评估提供了更可靠的理论基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19