PML-Book中泛化误差估计公式的修正与解析
2025-06-08 08:47:06作者:邓越浪Henry
在机器学习模型评估过程中,准确估计模型的泛化误差是至关重要的。近期,概率机器学习经典教材PML-Book对泛化误差估计公式进行了重要修正,这一改动不仅纠正了原有公式的符号问题,更准确地区分了训练误差和测试误差的关系。
原公式存在的问题
原书中公式5.84试图表达模型在训练集和测试集上表现的差异,即泛化误差。然而该公式存在两个主要问题:
- 符号方向错误:测试误差通常高于训练误差,导致原公式右侧计算结果为负值,这与泛化误差应为正值的直观理解相矛盾
- 概念定义不准确:原公式将"泛化误差"定义为真实风险与最优风险之差,但实际应用中更关注的是训练风险与真实风险的差异
修正后的公式体系
经过修正后,书中现在明确定义了三个关键概念:
- 训练误差:模型在训练集上的平均损失
- 测试误差:模型在独立测试集上的平均损失
- 泛化误差:训练误差与真实风险(期望风险)之差
修正后的公式体系更清晰地表达了这些概念之间的关系:
泛化误差 = 训练误差 - 真实风险
估计的泛化误差 ≈ 训练误差 - 测试误差
理论意义与实践价值
这一修正具有重要的理论和实践意义:
- 概念清晰化:明确区分了真实风险(不可观测)和测试误差(可观测)的不同
- 估计合理性:确保泛化误差估计值为正,符合"训练误差通常低于真实风险"的认知
- 模型评估:为实际应用中评估模型过拟合程度提供了更准确的数学表达
在实际机器学习项目中,这一修正帮助从业者更准确地:
- 评估模型在未知数据上的表现
- 判断模型是否存在过拟合
- 比较不同模型的泛化能力
对机器学习实践的影响
理解泛化误差的正确计算方式对机器学习实践有深远影响:
- 模型选择:基于准确的泛化误差估计,可以选择真正具有良好泛化能力的模型
- 正则化调整:通过观察泛化误差的变化,可以更合理地调整正则化强度
- 早停策略:在训练过程中监控泛化误差估计,可以确定最佳停止训练时机
这一修正体现了机器学习理论研究中概念精确化的重要性,也为实践中的模型评估提供了更可靠的理论基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210