PML-Book项目:最小描述长度(MDL)准则与WAIC方法的理论修正与扩展
在概率机器学习领域,模型选择是一个核心问题。PML-Book项目近期对其第5章中关于最小描述长度(Minimum Description Length, MDL)准则的内容进行了重要修正,并新增了关于WAIC(Watanabe-Akaike Information Criterion)方法的章节,使理论框架更加完善。
MDL准则的修正
原书中的公式5.62存在一个关键问题:它忽略了编码参数所需的成本。在信息论框架下,MDL准则要求我们考虑完整的两部分编码成本:
- 模型参数的编码长度
- 给定参数下数据的编码长度
修正后的公式现在准确反映了这一思想。对于一个模型M及其参数θ,数据的完整描述长度应表示为:
L(D) = L(θ|M) + L(D|θ,M)
其中L(θ|M)表示编码参数θ所需的比特数,L(D|θ,M)表示在给定模型和参数下编码数据D所需的比特数。
这一修正确保了MDL准则的理论完整性,使其能够更准确地平衡模型复杂度和拟合优度。在实际应用中,这意味着当比较不同模型时,我们不仅需要考虑模型对数据的拟合程度,还需要考虑存储模型参数本身所需的信息量。
WAIC方法的引入
新增的第5.2.5.4节专门介绍了WAIC方法,这是现代贝叶斯模型评估的重要工具。WAIC的全称是Watanabe-Akaike信息准则,它具有几个显著优势:
- 完全贝叶斯性质:WAIC基于后验分布而非点估计,能够更好地反映参数不确定性
- 理论保证:即使在模型错误指定的情况下,WAIC仍然保持良好性质
- 计算可行性:可以通过后验样本进行估计,适用于复杂模型
WAIC的计算基于对数预测密度的概念,它评估模型对新数据的预测能力。具体而言,WAIC包含两个主要组成部分:
- 对数预测密度的期望
- 对数预测密度的方差(作为复杂度惩罚项)
这种结构使其能够自动平衡模型的拟合优度和复杂度,类似于交叉验证的思想,但计算上更为高效。
理论意义与实践价值
这些修改和补充使PML-Book在模型选择理论方面的覆盖更加全面和准确。对于实践者而言,理解这些准则的内在机制有助于:
- 在模型开发阶段做出更明智的选择
- 避免过拟合或欠拟合问题
- 理解不同模型评估方法之间的联系与区别
- 为特定问题选择最合适的模型评估策略
特别值得注意的是,MDL和WAIC虽然基于不同的理论基础(信息论vs贝叶斯统计),但它们都体现了奥卡姆剃刀原则:在解释力相当的情况下,优先选择更简单的模型。这种一致性反映了模型选择问题的深层结构。
这些理论工具的掌握对于从事机器学习研究和应用开发的人员至关重要,它们为模型评估提供了坚实的理论基础和实用的计算方法。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00