首页
/ ktransformers项目部署DeepSeek-R1模型的性能优化实践

ktransformers项目部署DeepSeek-R1模型的性能优化实践

2025-05-16 13:23:36作者:傅爽业Veleda

在部署大型语言模型服务时,性能优化是一个关键挑战。本文将以ktranformers项目部署DeepSeek-R1模型为例,分享几个重要的性能调优经验。

CPU核心数配置优化

在部署过程中,cpu_infer参数的设置对性能影响显著。这个参数控制着模型推理时使用的CPU线程数量。根据实际测试经验,建议将该值设置为单个NUMA节点的CPU核心数。

通过lscpu命令可以查看系统的NUMA配置信息。例如在某个双路服务器上,NUMA node0有88个逻辑核心(0-87),NUMA node1也有88个核心(88-175)。这种情况下,cpu_infer应设置为87左右,略低于单个NUMA节点的核心数。

CUDA图与批处理参数

使用CUDA图(cuda graphs)可以显著提升GPU推理性能,但需要注意相关参数的配置。测试表明,当启用use_cuda_graph时,batch_size参数应保持默认值,不推荐手动调整。不恰当的批处理大小可能导致性能下降甚至请求无响应。

模型加载与推理参数

部署DeepSeek-R1这类大模型时,还需要注意以下参数配置:

  1. max_new_tokens:控制生成文本的最大长度,应根据实际需求合理设置,过大的值会消耗更多内存和计算资源
  2. paged参数:启用分页机制有助于管理大模型的显存使用
  3. flash_attn:是否使用Flash Attention优化,对性能有显著影响

性能监控与调优

在实际部署后,建议密切监控以下指标:

  1. 首Token延迟:从请求到第一个Token生成的时间
  2. Token生成速率:每秒生成的Token数量
  3. 系统资源利用率:CPU、GPU、内存的使用情况

通过这些指标可以判断配置是否合理,并进一步优化参数。例如,当发现Token生成速率过低时,可以检查CPU线程数配置是否合理,或者尝试调整其他相关参数。

总结

部署大型语言模型服务是一个需要精细调优的过程。通过合理配置CPU核心数、GPU相关参数以及模型推理参数,可以显著提升服务性能。建议在实际部署前充分测试不同配置下的性能表现,找到最适合当前硬件环境的参数组合。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16