Keras 3.9.0版本发布:新增重计算API与丰富图像增强层
Keras作为深度学习领域广受欢迎的高层神经网络API,近期发布了3.9.0版本更新。本次更新不仅带来了性能优化相关的重计算(Rematerialization)API,还新增了多项实用的图像增强层和数学运算操作,进一步丰富了深度学习模型构建的工具箱。
核心特性解析
1. 精细化重计算控制
新版本引入了keras.RematScope和keras.rematAPI,为模型训练过程中的内存优化提供了更精细的控制手段。重计算技术通过牺牲部分计算性能来减少内存占用,特别适用于大模型训练场景。
开发者现在可以:
- 仅对特定大小的层启用重计算
- 针对选定的层集合应用该技术
- 选择性重计算激活值
这一改进使得内存优化策略能够更加精准地适配模型架构特点,在内存受限环境下训练更大模型成为可能。
2. 图像增强层扩展
3.9.0版本显著扩充了图像处理能力,新增多个实用增强层:
AugMix和CutMix:实现先进的图像混合增强技术RandomInvert:随机颜色反转增强RandomErasing:随机区域擦除增强RandomGaussianBlur:随机高斯模糊处理RandomPerspective:随机透视变换增强
这些层的加入使得开发者能够更方便地构建鲁棒的计算机视觉模型,特别是在数据量有限的情况下,通过多样化的数据增强提升模型泛化能力。
3. 数学运算增强
基础运算能力得到扩展,新增:
rot90:矩阵旋转操作rearrange:Einops风格张量重组signbit和polar:复数运算支持- 图像专用的
perspective_transform和gaussian_blur操作
这些底层运算的丰富为自定义层和复杂模型构建提供了更强大的基础支持。
其他重要改进
-
模型安全:修复了NPZ格式模型文件可能存在的对象反序列化问题,增强了模型存储安全性。
-
跨框架支持:优化了
JaxLayer和FlaxLayer的dtype参数支持,提升了跨框架兼容性。 -
性能优化:OpenVINO后端增加了更多算子支持,提升了在该平台上的运行效率。
-
易用性改进:
BinaryAccuracy指标现在支持布尔型输入Resizing层新增antialias抗锯齿参数- 新增
RMSNormalization层
技术影响与应用建议
本次更新中重计算API的引入对大规模模型训练具有重要意义。开发者可以针对模型特点设计精细化的内存优化策略,例如:
- 对大型Transformer层启用重计算
- 保持小型全连接层的原始计算方式
- 仅对特定瓶颈层应用该技术
图像增强层的丰富使得计算机视觉领域的迁移学习和少样本学习更加便利。建议开发者:
- 组合使用多种增强技术提升数据多样性
- 通过
AugMix和CutMix实现先进的混合增强策略 - 利用
RandomPerspective增强模型对视角变化的鲁棒性
数学运算的扩展为自定义层开发提供了更多可能性,特别是在信号处理和复数运算领域。新加入的rearrange操作特别适合需要复杂张量重排的场景,可以替代传统的转置和重塑操作,使代码更加清晰易读。
Keras 3.9.0通过这一系列更新,进一步巩固了其作为深度学习首选工具库的地位,特别是在模型构建灵活性和训练优化方面提供了更多专业级工具。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00