Keras 3分布式训练中的NaN问题分析与解决方案
问题背景
在深度学习框架Keras 3中,当使用分布式训练策略(如tf.distribute.MirroredStrategy
)时,模型训练过程中会出现损失值变为NaN的问题。这个问题在Keras 3.5.0版本中不存在,但在Keras 3.9.0及更高版本中出现,表明这是一个在框架更新过程中引入的回归问题。
问题重现
通过一个简单的MNIST分类示例可以重现这个问题。当使用MirroredStrategy
分布式策略时,训练过程中的损失值和准确率都变为NaN,而验证集上的指标却显示正常。同样的代码在使用tf-keras或关闭分布式策略时则表现正常。
更简单的复现代码显示,即使在没有可训练参数的模型(如仅包含Identity层的模型)上,使用MSE损失函数也会出现NaN问题,这表明问题可能出在损失计算或梯度聚合的环节。
根本原因分析
经过深入调查,发现问题源于Keras 3中变量聚合方式的改变。具体来说,在提交28d39c0中修复了变量聚合的问题,使得分布式训练真正开始工作,但也暴露了更深层次的问题。
关键发现是当使用"sum"作为聚合方式时,框架将其映射到了tf.VariableAggregation.SUM
,这会导致数值不稳定。而如果将其改为映射到tf.VariableAggregation.NONE
,NaN问题就会消失。
技术细节
在分布式训练中,梯度聚合是一个关键步骤。Keras 3.9.0之前的版本实际上没有正确实现变量聚合,导致分布式训练并未真正发挥作用。修复后,正确的聚合方式暴露了数值计算问题:
- 当使用SUM聚合时,多个设备上的梯度相加可能导致数值溢出
- 特别是对于没有正则化的简单模型,梯度可能会变得非常大
- 在损失计算环节,这种数值不稳定会导致NaN的出现
解决方案
目前可行的临时解决方案是修改聚合方式的映射关系,将"sum"映射到NONE
而非SUM
:
def _map_aggregation(self, aggregation):
mapping = {
"none": tf.VariableAggregation.NONE,
"sum": tf.VariableAggregation.NONE, # 修改这里
"mean": tf.VariableAggregation.MEAN,
"only_first_replica": tf.VariableAggregation.ONLY_FIRST_REPLICA,
}
return mapping[aggregation]
更长期的解决方案需要Keras团队:
- 重新评估分布式训练中的梯度聚合策略
- 为不同的聚合场景添加适当的数值稳定措施
- 可能需要引入梯度裁剪或正则化作为默认行为
最佳实践建议
在Keras官方修复此问题前,建议开发者:
- 对于关键项目,暂时使用Keras 3.5.0版本
- 或者使用tf-keras作为替代方案
- 在自定义训练循环中显式添加梯度裁剪
- 监控训练初期的梯度大小,及时发现数值不稳定问题
- 考虑使用混合精度训练时额外注意数值范围
总结
分布式训练中的NaN问题揭示了深度学习框架在底层数值计算稳定性方面面临的挑战。随着Keras 3的持续发展,这类问题的出现和解决将帮助框架在保持易用性的同时,提供更强大、更稳定的分布式训练能力。开发者应当关注框架更新日志,并在升级版本时进行充分的测试验证。
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript037RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0405arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。02CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~03openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
最新内容推荐
项目优选









