首页
/ Keras 3分布式训练中的NaN问题分析与解决方案

Keras 3分布式训练中的NaN问题分析与解决方案

2025-04-29 17:17:17作者:董宙帆

问题背景

在深度学习框架Keras 3中,当使用分布式训练策略(如tf.distribute.MirroredStrategy)时,模型训练过程中会出现损失值变为NaN的问题。这个问题在Keras 3.5.0版本中不存在,但在Keras 3.9.0及更高版本中出现,表明这是一个在框架更新过程中引入的回归问题。

问题重现

通过一个简单的MNIST分类示例可以重现这个问题。当使用MirroredStrategy分布式策略时,训练过程中的损失值和准确率都变为NaN,而验证集上的指标却显示正常。同样的代码在使用tf-keras或关闭分布式策略时则表现正常。

更简单的复现代码显示,即使在没有可训练参数的模型(如仅包含Identity层的模型)上,使用MSE损失函数也会出现NaN问题,这表明问题可能出在损失计算或梯度聚合的环节。

根本原因分析

经过深入调查,发现问题源于Keras 3中变量聚合方式的改变。具体来说,在提交28d39c0中修复了变量聚合的问题,使得分布式训练真正开始工作,但也暴露了更深层次的问题。

关键发现是当使用"sum"作为聚合方式时,框架将其映射到了tf.VariableAggregation.SUM,这会导致数值不稳定。而如果将其改为映射到tf.VariableAggregation.NONE,NaN问题就会消失。

技术细节

在分布式训练中,梯度聚合是一个关键步骤。Keras 3.9.0之前的版本实际上没有正确实现变量聚合,导致分布式训练并未真正发挥作用。修复后,正确的聚合方式暴露了数值计算问题:

  1. 当使用SUM聚合时,多个设备上的梯度相加可能导致数值溢出
  2. 特别是对于没有正则化的简单模型,梯度可能会变得非常大
  3. 在损失计算环节,这种数值不稳定会导致NaN的出现

解决方案

目前可行的临时解决方案是修改聚合方式的映射关系,将"sum"映射到NONE而非SUM

def _map_aggregation(self, aggregation):
    mapping = {
        "none": tf.VariableAggregation.NONE,
        "sum": tf.VariableAggregation.NONE,  # 修改这里
        "mean": tf.VariableAggregation.MEAN,
        "only_first_replica": tf.VariableAggregation.ONLY_FIRST_REPLICA,
    }
    return mapping[aggregation]

更长期的解决方案需要Keras团队:

  1. 重新评估分布式训练中的梯度聚合策略
  2. 为不同的聚合场景添加适当的数值稳定措施
  3. 可能需要引入梯度裁剪或正则化作为默认行为

最佳实践建议

在Keras官方修复此问题前,建议开发者:

  1. 对于关键项目,暂时使用Keras 3.5.0版本
  2. 或者使用tf-keras作为替代方案
  3. 在自定义训练循环中显式添加梯度裁剪
  4. 监控训练初期的梯度大小,及时发现数值不稳定问题
  5. 考虑使用混合精度训练时额外注意数值范围

总结

分布式训练中的NaN问题揭示了深度学习框架在底层数值计算稳定性方面面临的挑战。随着Keras 3的持续发展,这类问题的出现和解决将帮助框架在保持易用性的同时,提供更强大、更稳定的分布式训练能力。开发者应当关注框架更新日志,并在升级版本时进行充分的测试验证。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8