首页
/ Hugging Face Optimum for Intel Gaudi:加速AI训练与推理

Hugging Face Optimum for Intel Gaudi:加速AI训练与推理

2024-09-12 01:57:14作者:柯茵沙

项目介绍

Hugging Face Optimum for Intel Gaudi 是一个旨在简化Hugging Face TransformersDifffusers库在Intel Gaudi AI加速器(HPU)上使用的接口。它提供了一系列工具,便于单卡或多卡设置下各种下游任务的模型加载、训练和推理。通过利用Intel Gaudi的高性能计算能力,此项目提供了高效且价格性能比优异的解决方案。用户可以轻松地将数千个Hugging Face模型适配到Intel Gaudi加速器上,并且只需进行少量修改即可适用于不同任务。

快速启动

要立即开始在Habana Gaudi处理器上使用Transformers,您需遵循以下步骤:

安装Optimum Habana稳定版本

pip install --upgrade-strategy eager optimum[habana]

获取示例脚本

克隆仓库并切换到对应稳定版本分支:

git clone https://github.com/huggingface/optimum-habana
cd optimum-habana
git checkout v1.13.1 # 假定这是最新的稳定版

示例用法

以修改过的Trainer为例,使用GaudiTrainer替换原Trainer类,添加Habana特定配置:

from optimum.habana import GaudiConfig, GaudiTrainer
from transformers import TrainingArguments

training_args = TrainingArguments(
    use_habana=True,
    use_lazy_mode=True,
    gaudi_config_name="path_to_gaudi_config",
)

# 初始化Trainer时使用GaudiTrainer
trainer = GaudiTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset if training_args.do_train else None,
    eval_dataset=eval_dataset if training_args.do_eval else None,
    compute_metrics=compute_metrics,
    tokenizer=tokenizer,
    data_collator=data_collator,
)

应用案例与最佳实践

对于使用案例,比如文本生成或者图像合成,您可以使用GaudiStableDiffusionPipeline来优化Stable Diffusion模型在HPU上的表现。这包括了如下的使用方式:

from optimum.habana.diffusers import GaudiStableDiffusionPipeline

model_name = "CompVis/stable-diffusion-v1-4"
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
    model_name,
    use_habana=True,
    use_hpu_graphs=True,
    gaudi_config="Habana/stable-diffusion",
)

output = pipeline(["一幅毕加索风格的松鼠图画"], num_images_per_prompt=16)

最佳实践中,重要的是调整GaudiConfig以适应您的模型和任务需求,充分利用混合精度训练以及优化算子。

典型生态项目

Optimum for Intel Gaudi项目不仅支持主流的自然语言处理模型,如BERT、RoBERTa等,还兼容深度学习领域内的多种架构,如用于图像分类的ViT、Swin,以及语音识别的Wav2Vec2等。此外,它也支持扩散模型Stable Diffusion等,在文本到图像生成领域展现实力。这个生态让开发者能够在其广泛支持的设备上灵活运用Hugging Face模型。

开发者可以通过访问Hugging Face官方文档和社区论坛,找到更多关于如何在实际项目中集成和优化这些模型的指导和案例分享。无论是深度学习研究者还是工业界的应用开发者,Optimum for Intel Gaudi都为在Intel Gaudi平台上部署高质量AI解决方案提供了强大工具集。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8