Hugging Face Optimum for Intel Gaudi:加速AI训练与推理
项目介绍
Hugging Face Optimum for Intel Gaudi 是一个旨在简化Hugging Face Transformers与Difffusers库在Intel Gaudi AI加速器(HPU)上使用的接口。它提供了一系列工具,便于单卡或多卡设置下各种下游任务的模型加载、训练和推理。通过利用Intel Gaudi的高性能计算能力,此项目提供了高效且价格性能比优异的解决方案。用户可以轻松地将数千个Hugging Face模型适配到Intel Gaudi加速器上,并且只需进行少量修改即可适用于不同任务。
快速启动
要立即开始在Habana Gaudi处理器上使用Transformers,您需遵循以下步骤:
安装Optimum Habana稳定版本
pip install --upgrade-strategy eager optimum[habana]
获取示例脚本
克隆仓库并切换到对应稳定版本分支:
git clone https://github.com/huggingface/optimum-habana
cd optimum-habana
git checkout v1.13.1 # 假定这是最新的稳定版
示例用法
以修改过的Trainer为例,使用GaudiTrainer
替换原Trainer
类,添加Habana特定配置:
from optimum.habana import GaudiConfig, GaudiTrainer
from transformers import TrainingArguments
training_args = TrainingArguments(
use_habana=True,
use_lazy_mode=True,
gaudi_config_name="path_to_gaudi_config",
)
# 初始化Trainer时使用GaudiTrainer
trainer = GaudiTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
应用案例与最佳实践
对于使用案例,比如文本生成或者图像合成,您可以使用GaudiStableDiffusionPipeline
来优化Stable Diffusion模型在HPU上的表现。这包括了如下的使用方式:
from optimum.habana.diffusers import GaudiStableDiffusionPipeline
model_name = "CompVis/stable-diffusion-v1-4"
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion",
)
output = pipeline(["一幅毕加索风格的松鼠图画"], num_images_per_prompt=16)
最佳实践中,重要的是调整GaudiConfig
以适应您的模型和任务需求,充分利用混合精度训练以及优化算子。
典型生态项目
Optimum for Intel Gaudi项目不仅支持主流的自然语言处理模型,如BERT、RoBERTa等,还兼容深度学习领域内的多种架构,如用于图像分类的ViT、Swin,以及语音识别的Wav2Vec2等。此外,它也支持扩散模型Stable Diffusion等,在文本到图像生成领域展现实力。这个生态让开发者能够在其广泛支持的设备上灵活运用Hugging Face模型。
开发者可以通过访问Hugging Face官方文档和社区论坛,找到更多关于如何在实际项目中集成和优化这些模型的指导和案例分享。无论是深度学习研究者还是工业界的应用开发者,Optimum for Intel Gaudi都为在Intel Gaudi平台上部署高质量AI解决方案提供了强大工具集。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04