GLM-4多GPU部署与使用指南
2025-06-04 05:07:53作者:史锋燃Gardner
多GPU部署的必要性
随着大模型规模的不断扩大,单张GPU显存往往难以满足模型推理的需求。GLM-4作为THUDM开发的大规模语言模型,其9B版本在推理时显存占用较高,使用多GPU并行计算成为解决显存不足问题的有效方案。
环境准备
在开始多GPU部署前,需要确保以下条件:
- 安装最新版本的transformers库
- 确认PyTorch已正确安装并支持CUDA
- 确保系统中有多块NVIDIA GPU且驱动正常
多GPU配置方法
方法一:使用device_map自动分配
这是官方推荐的多GPU部署方式,通过设置device_map="auto"参数,系统会自动将模型层分配到可用GPU上:
from transformers import AutoModel
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
device_map="auto"
).eval()
方法二:手动指定GPU设备
如果需要更精确地控制模型在不同GPU上的分配,可以显式设置CUDA_VISIBLE_DEVICES环境变量:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3" # 指定使用第2和第3块GPU
常见问题解决方案
问题1:AutoModel未定义错误
当出现"NameError: name 'AutoModel' is not defined"错误时,说明transformers库可能未正确导入。解决方案是确保在代码开头添加正确的导入语句:
from transformers import AutoModel
问题2:显存不足问题
即便使用多GPU,如果单卡显存不足(如16GB显存的GPU运行9B模型),仍可能出现OOM错误。这时可以尝试:
- 使用更大显存的GPU
- 启用量化技术减少显存占用
- 调整batch size等参数
问题3:复合演示中的多GPU支持
对于composite_demo中的streamlit应用,需要在对应的模型加载文件(如src/clients/hf.py)中修改device_map参数为"auto"。
最佳实践建议
- 始终使用最新版本的模型实现代码,官方会持续优化多GPU支持
- 在部署前使用nvidia-smi命令确认GPU状态
- 对于生产环境,建议使用torch.distributed进行更精细的并行控制
- 监控GPU使用情况,确保负载均衡
性能优化技巧
- 使用混合精度训练(inference)可以显著减少显存占用
- 考虑使用Flash Attention等优化技术提升推理速度
- 对于固定部署场景,可以预先将模型分配到特定GPU减少运行时开销
通过以上方法和技巧,用户可以充分利用多GPU资源高效运行GLM-4大模型,解决单卡显存不足的问题,提升推理效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328