GLM-4-9B-Chat模型并发请求支持的技术解析
2025-06-03 01:00:14作者:谭伦延
在部署和使用GLM-4-9B-Chat这类大语言模型时,并发请求支持是一个常见的需求场景。本文将从技术角度分析如何实现GLM-4-9B-Chat模型的并发请求处理能力。
并发请求的挑战
当通过Xinference框架部署GLM-4-9B-Chat模型时,用户可能会遇到并发请求处理的问题。具体表现为:第一个请求能正常返回结果,但后续并发请求返回空数组结果。这种情况通常与框架层面的实现方式有关,而非模型本身的问题。
技术解决方案
1. 使用VLLM引擎
VLLM是一个专为大型语言模型设计的高效推理和服务引擎,它原生支持并发请求处理。VLLM通过以下技术实现高效并发:
- 连续批处理(Continuous Batching):动态合并多个请求,提高GPU利用率
- PagedAttention:优化注意力机制的内存管理
- 高效的内存管理:减少内存碎片,提高吞吐量
2. 部署方式选择
在Xinference框架中,可以通过指定使用VLLM后端来加载模型,从而获得更好的并发支持:
# 使用VLLM方式加载GLM-4-9B-Chat模型
from xinference.client import Client
client = Client()
model_uid = client.launch_model(
model_name="glm-4-9b-chat",
engine="vllm",
... # 其他参数
)
3. 性能优化建议
为了获得最佳的并发性能,可以考虑以下优化措施:
- 调整批处理大小:根据GPU内存容量设置合适的max_batch_size
- 启用量化:使用4-bit或8-bit量化减少内存占用
- 设置合理的最大序列长度:避免过长的序列影响并发能力
- 监控GPU利用率:根据实际负载调整并发数
实现原理
VLLM实现并发请求的核心在于其创新的内存管理和调度算法:
- 内存管理:使用类似操作系统虚拟内存的分页机制,允许不同请求共享GPU内存
- 请求调度:采用动态批处理策略,将不同长度的请求智能组合
- 计算优化:实现高效的注意力机制计算,减少冗余操作
实际应用中的注意事项
在实际生产环境中部署GLM-4-9B-Chat模型处理并发请求时,还需要考虑:
- 请求超时处理:设置合理的超时时间,避免长时间运行的请求阻塞系统
- 限流机制:根据硬件能力实施适当的请求限流
- 监控告警:建立完善的监控体系,及时发现性能瓶颈
- 自动扩展:在云环境中考虑自动扩展能力以应对流量波动
通过以上技术方案,可以充分发挥GLM-4-9B-Chat模型的潜力,满足高并发场景下的服务需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K