GLM-4-9B-Chat模型的INT4量化实践指南
2025-06-03 02:03:06作者:柯茵沙
引言
在大型语言模型(Large Language Model)应用中,模型量化技术已成为降低计算资源需求、提升推理效率的重要手段。本文将详细介绍如何使用INT4量化技术对GLM-4-9B-Chat模型进行优化,帮助开发者在保持模型性能的同时显著减少内存占用和计算开销。
量化技术概述
模型量化是指将模型参数从高精度(如FP32)转换为低精度(如INT8、INT4)表示的过程。INT4量化将每个参数仅用4位表示,相比原始模型可减少约75%的内存占用,同时保持可接受的推理质量。
准备工作
在开始量化前,需要确保环境满足以下要求:
- 安装PyTorch和Transformers库
- 配置CUDA环境(如需GPU加速)
- 准备足够的显存(INT4量化后GLM-4-9B-Chat约需10GB显存)
量化实现步骤
1. 环境配置
首先设置GPU设备并导入必要的库:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 指定使用的GPU编号
2. 加载模型和分词器
MODEL_PATH = "THUDM/glm-4-9b-chat"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
3. 配置量化参数
使用BitsAndBytesConfig配置INT4量化参数:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # 启用4位量化
bnb_4bit_use_double_quant=True, # 使用双重量化进一步压缩
bnb_4bit_quant_type="nf4", # 使用NormalFloat4量化类型
bnb_4bit_compute_dtype=torch.bfloat16 # 计算时使用bfloat16精度
)
4. 加载量化模型
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
low_cpu_mem_usage=True,
trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto"
).eval()
5. 准备输入数据
query = "你好"
inputs = tokenizer.apply_chat_template(
[{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(device)
6. 执行推理
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
量化效果评估
INT4量化后的GLM-4-9B-Chat模型在保持较高推理质量的同时,具有以下优势:
- 显存占用大幅降低,从原始约18GB降至约10GB
- 推理速度提升约30-50%
- 支持在消费级GPU(如RTX 3090)上运行
注意事项
- 量化过程会导致轻微的性能下降,对于关键应用建议进行充分测试
- 双重量化(use_double_quant)会进一步降低模型大小但可能增加计算开销
- 不同量化类型(nf4/fp4)对模型效果有不同影响,建议根据任务需求选择
- 计算精度(bfloat16/fp16)影响最终结果质量
结语
通过本文介绍的INT4量化技术,开发者可以在资源受限的环境中高效部署GLM-4-9B-Chat模型。量化技术为大型语言模型的落地应用提供了更多可能性,使更多开发者和企业能够利用先进的AI能力。建议读者根据实际应用场景调整量化参数,找到性能与效率的最佳平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133