探索无垠的地球影像——sat-search
在寻找和下载公开卫星图像的道路上,有一个强大的工具不容错过——那就是sat-search。这是一个基于Python 3的库和命令行工具,专门用于利用符合STAC(Spatial Temporal Asset Catalog)标准的API来检索和下载全球卫星图像。
STAC与APIs
从版本0.3.0开始,sat-search不再设定默认的STAC端点,但可以通过参数或设置环境变量STAC_API_URL
来指定。目前已被验证可以正常工作的端点包括:
端点 | 数据源 |
---|---|
https://earth-search.aws.element84.com/v0 | Sentinel-2 |
安装简单
安装sat-search非常便捷,唯一依赖的是sat-stac,它自身只需要requests
和python-dateutil
这两个依赖。你可以通过PyPi或者直接从源代码仓库进行安装:
$ pip install sat-search
或者:
$ git clone https://github.com/sat-utils/sat-search.git
$ cd sat-search
$ pip install .
版本选择
当前最新版本是0.2.2,支持STAC v0.7.0。要安装其他版本,只需在pip命令中指定所需版本。
pip install sat-search==0.2.0
查看CHANGELOG了解更多版本信息。
使用sat-search
sat-search不仅能完全查询支持的STAC API,还可以将搜索结果保存为GeoJSON文件,以便后续加载。它既可作为Python库集成到你的应用中,也提供了命令行接口(CLI)供日常使用。
我们提供了一份Jupyter notebook教程,涵盖了library的所有主要功能。
命令行接口
sat-search的CLI十分强大,使用-h
即可获取详细的帮助信息:
$ sat-search -h
两个核心子命令search
和load
分别用于新搜索和加载以前的搜索结果。
$ sat-search search -h
search
命令能执行详细的搜索操作,包括对地理位置、时间范围、特定属性等的筛选,并可以将结果保存为GeoJSON或打印相关信息。
$ sat-search load -h
load
命令则允许你加载已保存的搜索结果,继续进行处理,甚至下载选定的资产数据。
项目特点
- 灵活搜索:支持全量查询,并能够根据日期、区域、属性等多种条件进行筛选。
- 兼容性强:与STAC标准兼容,适应多种公共卫星数据源。
- 易于集成:作为Python库,可以方便地融入你的数据分析流程。
- CLI易用:提供的命令行工具让用户无需编写代码即可完成常见任务。
如果你正在寻找一个高效且易于使用的工具来获取卫星数据,那么sat-search无疑是最佳选择。立即加入探索,开启你的全球遥感之旅吧!
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09