探索无垠的地球影像——sat-search
在寻找和下载公开卫星图像的道路上,有一个强大的工具不容错过——那就是sat-search。这是一个基于Python 3的库和命令行工具,专门用于利用符合STAC(Spatial Temporal Asset Catalog)标准的API来检索和下载全球卫星图像。
STAC与APIs
从版本0.3.0开始,sat-search不再设定默认的STAC端点,但可以通过参数或设置环境变量STAC_API_URL
来指定。目前已被验证可以正常工作的端点包括:
端点 | 数据源 |
---|---|
https://earth-search.aws.element84.com/v0 | Sentinel-2 |
安装简单
安装sat-search非常便捷,唯一依赖的是sat-stac,它自身只需要requests
和python-dateutil
这两个依赖。你可以通过PyPi或者直接从源代码仓库进行安装:
$ pip install sat-search
或者:
$ git clone https://github.com/sat-utils/sat-search.git
$ cd sat-search
$ pip install .
版本选择
当前最新版本是0.2.2,支持STAC v0.7.0。要安装其他版本,只需在pip命令中指定所需版本。
pip install sat-search==0.2.0
查看CHANGELOG了解更多版本信息。
使用sat-search
sat-search不仅能完全查询支持的STAC API,还可以将搜索结果保存为GeoJSON文件,以便后续加载。它既可作为Python库集成到你的应用中,也提供了命令行接口(CLI)供日常使用。
我们提供了一份Jupyter notebook教程,涵盖了library的所有主要功能。
命令行接口
sat-search的CLI十分强大,使用-h
即可获取详细的帮助信息:
$ sat-search -h
两个核心子命令search
和load
分别用于新搜索和加载以前的搜索结果。
$ sat-search search -h
search
命令能执行详细的搜索操作,包括对地理位置、时间范围、特定属性等的筛选,并可以将结果保存为GeoJSON或打印相关信息。
$ sat-search load -h
load
命令则允许你加载已保存的搜索结果,继续进行处理,甚至下载选定的资产数据。
项目特点
- 灵活搜索:支持全量查询,并能够根据日期、区域、属性等多种条件进行筛选。
- 兼容性强:与STAC标准兼容,适应多种公共卫星数据源。
- 易于集成:作为Python库,可以方便地融入你的数据分析流程。
- CLI易用:提供的命令行工具让用户无需编写代码即可完成常见任务。
如果你正在寻找一个高效且易于使用的工具来获取卫星数据,那么sat-search无疑是最佳选择。立即加入探索,开启你的全球遥感之旅吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









