Awesome GEE Community Datasets 使用教程
项目介绍
Awesome GEE Community Datasets 是一个由社区驱动的地理空间数据集集合,旨在为 Google Earth Engine (GEE) 社区提供丰富的数据资源。这些数据集由社区成员贡献,涵盖了各种领域,包括气候、环境、人口分布等。项目的目标是帮助研究人员和开发者更方便地访问和使用这些数据集,从而加速地理空间分析和研究。
项目快速启动
1. 安装 Google Earth Engine Python API
首先,确保你已经安装了 Google Earth Engine 的 Python API。如果没有安装,可以使用以下命令进行安装:
pip install earthengine-api
2. 初始化 Earth Engine
在开始使用之前,需要初始化 Earth Engine API:
import ee
# 初始化 Earth Engine
ee.Initialize()
3. 加载社区数据集
你可以通过以下代码加载 Awesome GEE Community Datasets 中的数据集。例如,加载 LandScan 全球人口数据集:
# 加载 LandScan 全球人口数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/landscan/global_1km')
# 选择一个时间点的数据
image = dataset.filter(ee.Filter.date('2020-01-01', '2020-01-02')).first()
# 显示数据
Map = geemap.Map()
Map.addLayer(image, {}, 'LandScan Population')
Map.centerObject(image, 2)
Map.addLayerControl()
Map
应用案例和最佳实践
1. 气候变化分析
使用 Awesome GEE Community Datasets 中的气候数据集,可以进行气候变化趋势分析。例如,分析过去30年间的全球气温变化:
# 加载全球气温数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/climate/global_temperature')
# 计算年平均气温
annual_mean = dataset.mean()
# 显示结果
Map = geemap.Map()
Map.addLayer(annual_mean, {}, 'Annual Mean Temperature')
Map.centerObject(annual_mean, 2)
Map.addLayerControl()
Map
2. 环境监测
利用环境数据集,可以进行环境监测和污染分析。例如,监测某一地区的空气质量:
# 加载空气质量数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/environment/air_quality')
# 选择特定时间点的数据
image = dataset.filter(ee.Filter.date('2023-01-01', '2023-01-02')).first()
# 显示结果
Map = geemap.Map()
Map.addLayer(image, {}, 'Air Quality')
Map.centerObject(image, 6)
Map.addLayerControl()
Map
典型生态项目
1. Google Earth Engine 官方项目
Google Earth Engine 官方提供了大量的地理空间数据处理工具和教程,可以与 Awesome GEE Community Datasets 结合使用,进行更复杂的地理空间分析。
2. OpenStreetMap
OpenStreetMap 是一个开源的地图项目,提供了丰富的地理数据。你可以将 OpenStreetMap 的数据与 Awesome GEE Community Datasets 结合,进行地理信息系统的开发和应用。
3. Sentinel Hub
Sentinel Hub 提供了高分辨率的卫星图像数据,可以与 Awesome GEE Community Datasets 结合,进行更精细的环境监测和分析。
通过这些生态项目的结合,你可以构建更强大的地理空间分析应用,满足不同领域的需求。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0291ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++048Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选








