首页
/ Awesome GEE Community Datasets 使用教程

Awesome GEE Community Datasets 使用教程

2024-09-16 20:47:44作者:齐添朝

项目介绍

Awesome GEE Community Datasets 是一个由社区驱动的地理空间数据集集合,旨在为 Google Earth Engine (GEE) 社区提供丰富的数据资源。这些数据集由社区成员贡献,涵盖了各种领域,包括气候、环境、人口分布等。项目的目标是帮助研究人员和开发者更方便地访问和使用这些数据集,从而加速地理空间分析和研究。

项目快速启动

1. 安装 Google Earth Engine Python API

首先,确保你已经安装了 Google Earth Engine 的 Python API。如果没有安装,可以使用以下命令进行安装:

pip install earthengine-api

2. 初始化 Earth Engine

在开始使用之前,需要初始化 Earth Engine API:

import ee

# 初始化 Earth Engine
ee.Initialize()

3. 加载社区数据集

你可以通过以下代码加载 Awesome GEE Community Datasets 中的数据集。例如,加载 LandScan 全球人口数据集:

# 加载 LandScan 全球人口数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/landscan/global_1km')

# 选择一个时间点的数据
image = dataset.filter(ee.Filter.date('2020-01-01', '2020-01-02')).first()

# 显示数据
Map = geemap.Map()
Map.addLayer(image, {}, 'LandScan Population')
Map.centerObject(image, 2)
Map.addLayerControl()
Map

应用案例和最佳实践

1. 气候变化分析

使用 Awesome GEE Community Datasets 中的气候数据集,可以进行气候变化趋势分析。例如,分析过去30年间的全球气温变化:

# 加载全球气温数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/climate/global_temperature')

# 计算年平均气温
annual_mean = dataset.mean()

# 显示结果
Map = geemap.Map()
Map.addLayer(annual_mean, {}, 'Annual Mean Temperature')
Map.centerObject(annual_mean, 2)
Map.addLayerControl()
Map

2. 环境监测

利用环境数据集,可以进行环境监测和污染分析。例如,监测某一地区的空气质量:

# 加载空气质量数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/environment/air_quality')

# 选择特定时间点的数据
image = dataset.filter(ee.Filter.date('2023-01-01', '2023-01-02')).first()

# 显示结果
Map = geemap.Map()
Map.addLayer(image, {}, 'Air Quality')
Map.centerObject(image, 6)
Map.addLayerControl()
Map

典型生态项目

1. Google Earth Engine 官方项目

Google Earth Engine 官方提供了大量的地理空间数据处理工具和教程,可以与 Awesome GEE Community Datasets 结合使用,进行更复杂的地理空间分析。

2. OpenStreetMap

OpenStreetMap 是一个开源的地图项目,提供了丰富的地理数据。你可以将 OpenStreetMap 的数据与 Awesome GEE Community Datasets 结合,进行地理信息系统的开发和应用。

3. Sentinel Hub

Sentinel Hub 提供了高分辨率的卫星图像数据,可以与 Awesome GEE Community Datasets 结合,进行更精细的环境监测和分析。

通过这些生态项目的结合,你可以构建更强大的地理空间分析应用,满足不同领域的需求。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
340
1.2 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
190
267
kernelkernel
deepin linux kernel
C
22
6
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
901
537
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
141
188
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
62
59
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
376
387
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4