Awesome GEE Community Datasets 使用教程
项目介绍
Awesome GEE Community Datasets 是一个由社区驱动的地理空间数据集集合,旨在为 Google Earth Engine (GEE) 社区提供丰富的数据资源。这些数据集由社区成员贡献,涵盖了各种领域,包括气候、环境、人口分布等。项目的目标是帮助研究人员和开发者更方便地访问和使用这些数据集,从而加速地理空间分析和研究。
项目快速启动
1. 安装 Google Earth Engine Python API
首先,确保你已经安装了 Google Earth Engine 的 Python API。如果没有安装,可以使用以下命令进行安装:
pip install earthengine-api
2. 初始化 Earth Engine
在开始使用之前,需要初始化 Earth Engine API:
import ee
# 初始化 Earth Engine
ee.Initialize()
3. 加载社区数据集
你可以通过以下代码加载 Awesome GEE Community Datasets 中的数据集。例如,加载 LandScan 全球人口数据集:
# 加载 LandScan 全球人口数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/landscan/global_1km')
# 选择一个时间点的数据
image = dataset.filter(ee.Filter.date('2020-01-01', '2020-01-02')).first()
# 显示数据
Map = geemap.Map()
Map.addLayer(image, {}, 'LandScan Population')
Map.centerObject(image, 2)
Map.addLayerControl()
Map
应用案例和最佳实践
1. 气候变化分析
使用 Awesome GEE Community Datasets 中的气候数据集,可以进行气候变化趋势分析。例如,分析过去30年间的全球气温变化:
# 加载全球气温数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/climate/global_temperature')
# 计算年平均气温
annual_mean = dataset.mean()
# 显示结果
Map = geemap.Map()
Map.addLayer(annual_mean, {}, 'Annual Mean Temperature')
Map.centerObject(annual_mean, 2)
Map.addLayerControl()
Map
2. 环境监测
利用环境数据集,可以进行环境监测和污染分析。例如,监测某一地区的空气质量:
# 加载空气质量数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/environment/air_quality')
# 选择特定时间点的数据
image = dataset.filter(ee.Filter.date('2023-01-01', '2023-01-02')).first()
# 显示结果
Map = geemap.Map()
Map.addLayer(image, {}, 'Air Quality')
Map.centerObject(image, 6)
Map.addLayerControl()
Map
典型生态项目
1. Google Earth Engine 官方项目
Google Earth Engine 官方提供了大量的地理空间数据处理工具和教程,可以与 Awesome GEE Community Datasets 结合使用,进行更复杂的地理空间分析。
2. OpenStreetMap
OpenStreetMap 是一个开源的地图项目,提供了丰富的地理数据。你可以将 OpenStreetMap 的数据与 Awesome GEE Community Datasets 结合,进行地理信息系统的开发和应用。
3. Sentinel Hub
Sentinel Hub 提供了高分辨率的卫星图像数据,可以与 Awesome GEE Community Datasets 结合,进行更精细的环境监测和分析。
通过这些生态项目的结合,你可以构建更强大的地理空间分析应用,满足不同领域的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00