Awesome GEE Community Datasets 使用教程
项目介绍
Awesome GEE Community Datasets 是一个由社区驱动的地理空间数据集集合,旨在为 Google Earth Engine (GEE) 社区提供丰富的数据资源。这些数据集由社区成员贡献,涵盖了各种领域,包括气候、环境、人口分布等。项目的目标是帮助研究人员和开发者更方便地访问和使用这些数据集,从而加速地理空间分析和研究。
项目快速启动
1. 安装 Google Earth Engine Python API
首先,确保你已经安装了 Google Earth Engine 的 Python API。如果没有安装,可以使用以下命令进行安装:
pip install earthengine-api
2. 初始化 Earth Engine
在开始使用之前,需要初始化 Earth Engine API:
import ee
# 初始化 Earth Engine
ee.Initialize()
3. 加载社区数据集
你可以通过以下代码加载 Awesome GEE Community Datasets 中的数据集。例如,加载 LandScan 全球人口数据集:
# 加载 LandScan 全球人口数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/landscan/global_1km')
# 选择一个时间点的数据
image = dataset.filter(ee.Filter.date('2020-01-01', '2020-01-02')).first()
# 显示数据
Map = geemap.Map()
Map.addLayer(image, {}, 'LandScan Population')
Map.centerObject(image, 2)
Map.addLayerControl()
Map
应用案例和最佳实践
1. 气候变化分析
使用 Awesome GEE Community Datasets 中的气候数据集,可以进行气候变化趋势分析。例如,分析过去30年间的全球气温变化:
# 加载全球气温数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/climate/global_temperature')
# 计算年平均气温
annual_mean = dataset.mean()
# 显示结果
Map = geemap.Map()
Map.addLayer(annual_mean, {}, 'Annual Mean Temperature')
Map.centerObject(annual_mean, 2)
Map.addLayerControl()
Map
2. 环境监测
利用环境数据集,可以进行环境监测和污染分析。例如,监测某一地区的空气质量:
# 加载空气质量数据集
dataset = ee.ImageCollection('projects/sat-io/open-datasets/environment/air_quality')
# 选择特定时间点的数据
image = dataset.filter(ee.Filter.date('2023-01-01', '2023-01-02')).first()
# 显示结果
Map = geemap.Map()
Map.addLayer(image, {}, 'Air Quality')
Map.centerObject(image, 6)
Map.addLayerControl()
Map
典型生态项目
1. Google Earth Engine 官方项目
Google Earth Engine 官方提供了大量的地理空间数据处理工具和教程,可以与 Awesome GEE Community Datasets 结合使用,进行更复杂的地理空间分析。
2. OpenStreetMap
OpenStreetMap 是一个开源的地图项目,提供了丰富的地理数据。你可以将 OpenStreetMap 的数据与 Awesome GEE Community Datasets 结合,进行地理信息系统的开发和应用。
3. Sentinel Hub
Sentinel Hub 提供了高分辨率的卫星图像数据,可以与 Awesome GEE Community Datasets 结合,进行更精细的环境监测和分析。
通过这些生态项目的结合,你可以构建更强大的地理空间分析应用,满足不同领域的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00