MMpose中姿态提升模型导出ONNX格式的技术指南
2025-06-03 15:21:09作者:裴锟轩Denise
概述
在计算机视觉领域,MMpose是一个功能强大的姿态估计开源项目。其中,姿态提升(Pose Lifting)模型能够将2D姿态估计结果提升为3D姿态。本文将详细介绍如何将MMpose中的姿态提升模型导出为ONNX格式,以便在不同平台上部署使用。
模型导出方法
与RTMPose等2D姿态估计模型不同,姿态提升模型的导出过程更为简单直接。开发者可以直接使用PyTorch内置的ONNX导出功能,而不需要复杂的配置过程。
导出步骤
-
加载预训练模型:首先需要加载训练好的姿态提升模型权重文件(.pth)。
-
准备输入数据:创建一个符合模型输入要求的虚拟输入张量。对于姿态提升模型,输入通常是2D关键点坐标序列。
-
执行导出:使用torch.onnx.export函数进行模型导出,需要指定:
- 模型实例
- 虚拟输入数据
- 输出ONNX文件路径
- 输入/输出名称
- 动态轴配置(如果需要支持可变长度输入)
示例代码框架
import torch
from mmpose.models import build_poselift_model
# 1. 构建模型
model = build_poselift_model(config_file)
checkpoint = torch.load(ckpt_path)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# 2. 准备虚拟输入
dummy_input = torch.randn(1, seq_len, num_joints, 2) # 示例输入形状
# 3. 导出ONNX
torch.onnx.export(
model,
dummy_input,
"pose_lift.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
'input': {0: 'batch', 1: 'sequence'},
'output': {0: 'batch', 1: 'sequence'}
}
)
注意事项
-
输入维度:确保虚拟输入的维度与模型训练时的输入维度一致,包括序列长度和关键点数量。
-
动态轴:如果模型需要处理可变长度的输入序列,务必正确配置dynamic_axes参数。
-
后处理:导出的ONNX模型通常只包含核心网络部分,可能不包含后处理步骤,部署时需要考虑这一点。
-
版本兼容性:不同版本的PyTorch和ONNX运行时可能存在兼容性问题,建议使用较新的稳定版本。
常见问题解决
如果在导出过程中遇到"ConfigDict对象没有test_cfg属性"等错误,通常是因为尝试使用了不适用于姿态提升模型的导出脚本。姿态提升模型的导出不需要复杂的配置,直接使用PyTorch的导出接口即可。
总结
通过本文介绍的方法,开发者可以轻松地将MMpose中的姿态提升模型导出为ONNX格式,为后续的跨平台部署和性能优化奠定基础。相比2D姿态估计模型,姿态提升模型的导出过程更加简单直接,只需关注核心的网络结构和输入输出配置即可。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355