MMpose中姿态提升模型导出ONNX格式的技术指南
2025-06-03 16:10:56作者:裴锟轩Denise
概述
在计算机视觉领域,MMpose是一个功能强大的姿态估计开源项目。其中,姿态提升(Pose Lifting)模型能够将2D姿态估计结果提升为3D姿态。本文将详细介绍如何将MMpose中的姿态提升模型导出为ONNX格式,以便在不同平台上部署使用。
模型导出方法
与RTMPose等2D姿态估计模型不同,姿态提升模型的导出过程更为简单直接。开发者可以直接使用PyTorch内置的ONNX导出功能,而不需要复杂的配置过程。
导出步骤
-
加载预训练模型:首先需要加载训练好的姿态提升模型权重文件(.pth)。
-
准备输入数据:创建一个符合模型输入要求的虚拟输入张量。对于姿态提升模型,输入通常是2D关键点坐标序列。
-
执行导出:使用torch.onnx.export函数进行模型导出,需要指定:
- 模型实例
- 虚拟输入数据
- 输出ONNX文件路径
- 输入/输出名称
- 动态轴配置(如果需要支持可变长度输入)
示例代码框架
import torch
from mmpose.models import build_poselift_model
# 1. 构建模型
model = build_poselift_model(config_file)
checkpoint = torch.load(ckpt_path)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# 2. 准备虚拟输入
dummy_input = torch.randn(1, seq_len, num_joints, 2) # 示例输入形状
# 3. 导出ONNX
torch.onnx.export(
model,
dummy_input,
"pose_lift.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
'input': {0: 'batch', 1: 'sequence'},
'output': {0: 'batch', 1: 'sequence'}
}
)
注意事项
-
输入维度:确保虚拟输入的维度与模型训练时的输入维度一致,包括序列长度和关键点数量。
-
动态轴:如果模型需要处理可变长度的输入序列,务必正确配置dynamic_axes参数。
-
后处理:导出的ONNX模型通常只包含核心网络部分,可能不包含后处理步骤,部署时需要考虑这一点。
-
版本兼容性:不同版本的PyTorch和ONNX运行时可能存在兼容性问题,建议使用较新的稳定版本。
常见问题解决
如果在导出过程中遇到"ConfigDict对象没有test_cfg属性"等错误,通常是因为尝试使用了不适用于姿态提升模型的导出脚本。姿态提升模型的导出不需要复杂的配置,直接使用PyTorch的导出接口即可。
总结
通过本文介绍的方法,开发者可以轻松地将MMpose中的姿态提升模型导出为ONNX格式,为后续的跨平台部署和性能优化奠定基础。相比2D姿态估计模型,姿态提升模型的导出过程更加简单直接,只需关注核心的网络结构和输入输出配置即可。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp课程中屏幕放大器知识点优化分析3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp音乐播放器项目中的函数调用问题解析
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116