MMpose中姿态提升模型导出ONNX格式的技术指南
2025-06-03 19:24:52作者:裴锟轩Denise
概述
在计算机视觉领域,MMpose是一个功能强大的姿态估计开源项目。其中,姿态提升(Pose Lifting)模型能够将2D姿态估计结果提升为3D姿态。本文将详细介绍如何将MMpose中的姿态提升模型导出为ONNX格式,以便在不同平台上部署使用。
模型导出方法
与RTMPose等2D姿态估计模型不同,姿态提升模型的导出过程更为简单直接。开发者可以直接使用PyTorch内置的ONNX导出功能,而不需要复杂的配置过程。
导出步骤
-
加载预训练模型:首先需要加载训练好的姿态提升模型权重文件(.pth)。
-
准备输入数据:创建一个符合模型输入要求的虚拟输入张量。对于姿态提升模型,输入通常是2D关键点坐标序列。
-
执行导出:使用torch.onnx.export函数进行模型导出,需要指定:
- 模型实例
- 虚拟输入数据
- 输出ONNX文件路径
- 输入/输出名称
- 动态轴配置(如果需要支持可变长度输入)
示例代码框架
import torch
from mmpose.models import build_poselift_model
# 1. 构建模型
model = build_poselift_model(config_file)
checkpoint = torch.load(ckpt_path)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# 2. 准备虚拟输入
dummy_input = torch.randn(1, seq_len, num_joints, 2) # 示例输入形状
# 3. 导出ONNX
torch.onnx.export(
model,
dummy_input,
"pose_lift.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
'input': {0: 'batch', 1: 'sequence'},
'output': {0: 'batch', 1: 'sequence'}
}
)
注意事项
-
输入维度:确保虚拟输入的维度与模型训练时的输入维度一致,包括序列长度和关键点数量。
-
动态轴:如果模型需要处理可变长度的输入序列,务必正确配置dynamic_axes参数。
-
后处理:导出的ONNX模型通常只包含核心网络部分,可能不包含后处理步骤,部署时需要考虑这一点。
-
版本兼容性:不同版本的PyTorch和ONNX运行时可能存在兼容性问题,建议使用较新的稳定版本。
常见问题解决
如果在导出过程中遇到"ConfigDict对象没有test_cfg属性"等错误,通常是因为尝试使用了不适用于姿态提升模型的导出脚本。姿态提升模型的导出不需要复杂的配置,直接使用PyTorch的导出接口即可。
总结
通过本文介绍的方法,开发者可以轻松地将MMpose中的姿态提升模型导出为ONNX格式,为后续的跨平台部署和性能优化奠定基础。相比2D姿态估计模型,姿态提升模型的导出过程更加简单直接,只需关注核心的网络结构和输入输出配置即可。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1