k8s-prometheus-adapter中自定义指标配置问题解析
问题背景
在使用k8s-prometheus-adapter配置自定义指标时,用户遇到了无法正确获取自定义指标的问题。具体表现为配置了新的seriesQuery后,虽然Prometheus-adapter能够运行,但在查询自定义指标时出现超时错误,且新配置的指标未出现在可用指标列表中。
错误现象分析
用户配置了一个名为"ready_pods_per_deployment"的指标,旨在统计每个Deployment中处于就绪状态的Pod数量。配置如下:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
name:
matches: "ready_pods_per_deployment"
as: "ready_pods"
metricsQuery: |
sum by (owner_name) (
kube_pod_status_ready{condition="true"}
* on(pod) group_left(owner_name) kube_pod_owner{owner_kind="ReplicaSet"}
)
然而,在查询自定义指标时,系统返回了大量超时错误日志,如"http: Handler timeout"和"http2: stream closed"等。这些错误表明Prometheus-adapter在处理请求时遇到了性能问题或配置问题。
问题根源
经过深入分析,发现问题的根本原因在于配置中缺少了必要的resources部分。在Prometheus-adapter的配置中,resources部分用于定义如何将Prometheus中的标签映射到Kubernetes资源上。缺少这部分配置会导致适配器无法正确关联指标与Kubernetes资源,进而导致查询失败。
解决方案
正确的配置应该包含resources部分,明确指定如何将Prometheus标签映射到Kubernetes资源。修正后的配置如下:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}
name:
matches: "^kube_pod_status_ready$"
as: "ready_pods"
metricsQuery: 'sum by (namespace, pod) (kube_pod_status_ready{condition="true"})'
这个修正后的配置:
- 明确指定了namespace和pod标签如何映射到Kubernetes资源
- 简化了metricsQuery,直接按namespace和pod分组统计就绪状态的Pod数量
- 使用了更精确的正则表达式匹配原始指标名称
技术要点
-
resources配置的重要性:在Prometheus-adapter中,resources部分是将Prometheus指标与Kubernetes资源关联的关键。它告诉适配器如何将Prometheus标签转换为Kubernetes API可以理解的资源标识。
-
标签映射原理:
overrides允许覆盖默认的标签映射规则。在这个案例中,我们明确指定了namespace和pod标签对应的Kubernetes资源类型。 -
查询优化:原始配置中的复杂join操作(* on(pod) group_left)可能导致性能问题。简化后的查询更直接,减少了计算复杂度。
-
指标命名规范:使用
^kube_pod_status_ready$这样的精确匹配可以避免意外的指标名称冲突。
最佳实践建议
- 在配置自定义指标时,始终包含完整的resources部分
- 对于简单的聚合需求,优先考虑使用简单的PromQL查询
- 在修改配置后,检查Prometheus-adapter的日志以确保没有错误
- 使用
kubectl get --raw命令验证指标是否已正确注册 - 对于复杂的指标转换,考虑分步测试,先验证基本查询再添加复杂逻辑
总结
在k8s-prometheus-adapter中配置自定义指标时,resources部分的正确配置至关重要。它不仅影响指标能否正确显示,还关系到查询的性能和稳定性。通过遵循正确的配置模式和简化查询逻辑,可以有效地解决自定义指标查询中的各种问题,为Kubernetes的自动伸缩和监控提供可靠的数据支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00