k8s-prometheus-adapter中自定义指标配置问题解析
问题背景
在使用k8s-prometheus-adapter配置自定义指标时,用户遇到了无法正确获取自定义指标的问题。具体表现为配置了新的seriesQuery后,虽然Prometheus-adapter能够运行,但在查询自定义指标时出现超时错误,且新配置的指标未出现在可用指标列表中。
错误现象分析
用户配置了一个名为"ready_pods_per_deployment"的指标,旨在统计每个Deployment中处于就绪状态的Pod数量。配置如下:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
name:
matches: "ready_pods_per_deployment"
as: "ready_pods"
metricsQuery: |
sum by (owner_name) (
kube_pod_status_ready{condition="true"}
* on(pod) group_left(owner_name) kube_pod_owner{owner_kind="ReplicaSet"}
)
然而,在查询自定义指标时,系统返回了大量超时错误日志,如"http: Handler timeout"和"http2: stream closed"等。这些错误表明Prometheus-adapter在处理请求时遇到了性能问题或配置问题。
问题根源
经过深入分析,发现问题的根本原因在于配置中缺少了必要的resources部分。在Prometheus-adapter的配置中,resources部分用于定义如何将Prometheus中的标签映射到Kubernetes资源上。缺少这部分配置会导致适配器无法正确关联指标与Kubernetes资源,进而导致查询失败。
解决方案
正确的配置应该包含resources部分,明确指定如何将Prometheus标签映射到Kubernetes资源。修正后的配置如下:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}
name:
matches: "^kube_pod_status_ready$"
as: "ready_pods"
metricsQuery: 'sum by (namespace, pod) (kube_pod_status_ready{condition="true"})'
这个修正后的配置:
- 明确指定了namespace和pod标签如何映射到Kubernetes资源
- 简化了metricsQuery,直接按namespace和pod分组统计就绪状态的Pod数量
- 使用了更精确的正则表达式匹配原始指标名称
技术要点
-
resources配置的重要性:在Prometheus-adapter中,resources部分是将Prometheus指标与Kubernetes资源关联的关键。它告诉适配器如何将Prometheus标签转换为Kubernetes API可以理解的资源标识。
-
标签映射原理:
overrides允许覆盖默认的标签映射规则。在这个案例中,我们明确指定了namespace和pod标签对应的Kubernetes资源类型。 -
查询优化:原始配置中的复杂join操作(* on(pod) group_left)可能导致性能问题。简化后的查询更直接,减少了计算复杂度。
-
指标命名规范:使用
^kube_pod_status_ready$这样的精确匹配可以避免意外的指标名称冲突。
最佳实践建议
- 在配置自定义指标时,始终包含完整的resources部分
- 对于简单的聚合需求,优先考虑使用简单的PromQL查询
- 在修改配置后,检查Prometheus-adapter的日志以确保没有错误
- 使用
kubectl get --raw命令验证指标是否已正确注册 - 对于复杂的指标转换,考虑分步测试,先验证基本查询再添加复杂逻辑
总结
在k8s-prometheus-adapter中配置自定义指标时,resources部分的正确配置至关重要。它不仅影响指标能否正确显示,还关系到查询的性能和稳定性。通过遵循正确的配置模式和简化查询逻辑,可以有效地解决自定义指标查询中的各种问题,为Kubernetes的自动伸缩和监控提供可靠的数据支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00