Kubernetes Prometheus Adapter 自定义指标配置问题排查指南
问题背景
在使用 Kubernetes 的 Prometheus Adapter 时,用户尝试添加一个自定义指标"pods readiness by workload"(按工作负载统计的就绪Pod数量),但在配置后遇到了指标无法检索的问题,同时Prometheus Adapter的日志中出现了大量超时错误。
问题现象
用户在Prometheus Adapter的配置中添加了一个新的seriesQuery配置项,用于查询就绪状态的Pod数量:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
name:
matches: "ready_pods_per_deployment"
as: "ready_pods"
metricsQuery: |
sum by (owner_name) (
kube_pod_status_ready{condition="true"}
* on(pod) group_left(owner_name) kube_pod_owner{owner_kind="ReplicaSet"}
)
配置完成后,虽然Prometheus Adapter能够列出许多其他指标,但新添加的指标却无法显示。同时,日志中出现了大量类似"http: Handler timeout"和"http2: stream closed"的错误信息。
问题分析
-
资源映射缺失:原始配置中缺少了关键的
resources部分,这导致Prometheus Adapter无法正确地将Prometheus指标映射到Kubernetes资源上。 -
指标名称匹配问题:
name.matches字段使用了自定义名称"ready_pods_per_deployment",而实际上应该匹配Prometheus中的原始指标名称"kube_pod_status_ready"。 -
查询表达式优化:原始查询可能过于复杂,涉及多个指标的关联操作,这可能导致查询性能问题。
解决方案
正确的配置应该包含资源映射,并使用更直接的查询表达式:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}
name:
matches: "^kube_pod_status_ready$"
as: "ready_pods"
metricsQuery: 'sum by (namespace, pod) (kube_pod_status_ready{condition="true"})'
配置说明
-
resources.overrides:这部分配置将Prometheus标签映射到Kubernetes资源上。在这里,我们将"namespace"标签映射到Kubernetes命名空间资源,"pod"标签映射到Pod资源。
-
name.matches:使用正则表达式匹配Prometheus中的原始指标名称。
-
metricsQuery:简化后的查询表达式,直接按命名空间和Pod名称聚合就绪状态的Pod数量。
实施建议
-
逐步验证:建议先使用简单的查询表达式验证基本功能,确认指标能够正确显示后,再逐步添加复杂的查询逻辑。
-
性能监控:在添加复杂查询时,密切监控Prometheus Adapter的性能指标,确保不会因查询复杂度导致系统过载。
-
日志分析:定期检查Prometheus Adapter的日志,及时发现并解决潜在的性能问题。
总结
在配置Prometheus Adapter的自定义指标时,确保正确的资源映射和合理的查询表达式是关键。通过添加必要的资源映射配置和优化查询表达式,可以解决指标无法显示和系统超时的问题。对于复杂的指标需求,建议采用分步实施和验证的方法,确保系统的稳定性和可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00