Kubernetes Prometheus Adapter 自定义指标配置问题排查指南
问题背景
在使用 Kubernetes 的 Prometheus Adapter 时,用户尝试添加一个自定义指标"pods readiness by workload"(按工作负载统计的就绪Pod数量),但在配置后遇到了指标无法检索的问题,同时Prometheus Adapter的日志中出现了大量超时错误。
问题现象
用户在Prometheus Adapter的配置中添加了一个新的seriesQuery
配置项,用于查询就绪状态的Pod数量:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
name:
matches: "ready_pods_per_deployment"
as: "ready_pods"
metricsQuery: |
sum by (owner_name) (
kube_pod_status_ready{condition="true"}
* on(pod) group_left(owner_name) kube_pod_owner{owner_kind="ReplicaSet"}
)
配置完成后,虽然Prometheus Adapter能够列出许多其他指标,但新添加的指标却无法显示。同时,日志中出现了大量类似"http: Handler timeout"和"http2: stream closed"的错误信息。
问题分析
-
资源映射缺失:原始配置中缺少了关键的
resources
部分,这导致Prometheus Adapter无法正确地将Prometheus指标映射到Kubernetes资源上。 -
指标名称匹配问题:
name.matches
字段使用了自定义名称"ready_pods_per_deployment",而实际上应该匹配Prometheus中的原始指标名称"kube_pod_status_ready"。 -
查询表达式优化:原始查询可能过于复杂,涉及多个指标的关联操作,这可能导致查询性能问题。
解决方案
正确的配置应该包含资源映射,并使用更直接的查询表达式:
- seriesQuery: 'kube_pod_status_ready{condition="true"}'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}
name:
matches: "^kube_pod_status_ready$"
as: "ready_pods"
metricsQuery: 'sum by (namespace, pod) (kube_pod_status_ready{condition="true"})'
配置说明
-
resources.overrides:这部分配置将Prometheus标签映射到Kubernetes资源上。在这里,我们将"namespace"标签映射到Kubernetes命名空间资源,"pod"标签映射到Pod资源。
-
name.matches:使用正则表达式匹配Prometheus中的原始指标名称。
-
metricsQuery:简化后的查询表达式,直接按命名空间和Pod名称聚合就绪状态的Pod数量。
实施建议
-
逐步验证:建议先使用简单的查询表达式验证基本功能,确认指标能够正确显示后,再逐步添加复杂的查询逻辑。
-
性能监控:在添加复杂查询时,密切监控Prometheus Adapter的性能指标,确保不会因查询复杂度导致系统过载。
-
日志分析:定期检查Prometheus Adapter的日志,及时发现并解决潜在的性能问题。
总结
在配置Prometheus Adapter的自定义指标时,确保正确的资源映射和合理的查询表达式是关键。通过添加必要的资源映射配置和优化查询表达式,可以解决指标无法显示和系统超时的问题。对于复杂的指标需求,建议采用分步实施和验证的方法,确保系统的稳定性和可靠性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









