skorch项目中学习率调度与回调延迟激活的实现技巧
2025-06-04 00:33:19作者:滕妙奇
在深度学习模型训练过程中,学习率调度和早停策略是优化训练效果的重要手段。本文将介绍在skorch框架下如何实现回调函数的延迟激活以及复杂学习率调度策略的应用。
回调函数延迟激活的实现
在模型训练初期,我们往往不希望过早应用学习率调整或早停策略,因为这些策略可能会干扰模型的初始学习阶段。skorch默认的回调函数并没有提供延迟激活的功能,但我们可以通过继承和修改相关类来实现这一需求。
以ReduceLROnPlateau调度器为例,我们可以创建一个自定义的LRScheduler类,添加epoch_start参数来控制调度器的激活时机:
class CustomLRScheduler(LRScheduler):
def __init__(self, policy='WarmRestartLR', monitor='train_loss',
event_name="event_lr", step_every='epoch',
epoch_start=1, **kwargs):
super().__init__(policy=policy, monitor=monitor,
event_name=event_name, step_every=step_every)
self.epoch_start = epoch_start
vars(self).update(kwargs)
def on_epoch_end(self, net, **kwargs):
if len(net.history) <= self.epoch_start:
print(f"Learning rate scheduler not active until epoch {self.epoch_start}")
return
return super().on_epoch_end(net, **kwargs)
这种实现方式简洁有效,通过检查当前epoch数来决定是否执行调度逻辑。同样的方法也可以应用于EarlyStopping等回调函数。
复杂学习率调度策略
PyTorch提供了多种学习率调度器,包括SequentialLR这种可以组合多个调度策略的高级调度器。在skorch中,我们可以这样使用:
from torch.optim.lr_scheduler import SequentialLR, ConstantLR, ReduceLROnPlateau
# 定义阶段1:恒定学习率
scheduler1 = ConstantLR(optimizer, factor=1.0, total_iters=50)
# 定义阶段2:基于指标的学习率调整
scheduler2 = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
# 组合调度器
lr_scheduler = LRScheduler(
policy=SequentialLR,
schedulers=[scheduler1, scheduler2],
milestones=[50] # 在第50个epoch后切换到第二个调度器
)
这种组合调度策略特别适合需要分阶段训练的场景,比如先使用固定学习率进行预热,然后再根据验证指标动态调整学习率。
实际应用建议
- 学习率预热:在训练初期使用较低的学习率或固定学习率,有助于模型稳定收敛
- 分阶段训练:不同训练阶段可以采用不同的优化策略,如初期关注全局特征,后期关注细节优化
- 早停策略:合理设置早停的激活时机,避免过早终止训练
- 监控指标选择:根据任务特点选择合适的监控指标,分类任务常用准确率,回归任务可考虑自定义指标
通过灵活组合这些技术,我们可以更好地控制模型训练过程,提高训练效率和模型性能。skorch的模块化设计使得这些高级训练策略能够方便地集成到现有训练流程中。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137