skorch项目中学习率调度与回调延迟激活的实现技巧
2025-06-04 09:23:59作者:滕妙奇
在深度学习模型训练过程中,学习率调度和早停策略是优化训练效果的重要手段。本文将介绍在skorch框架下如何实现回调函数的延迟激活以及复杂学习率调度策略的应用。
回调函数延迟激活的实现
在模型训练初期,我们往往不希望过早应用学习率调整或早停策略,因为这些策略可能会干扰模型的初始学习阶段。skorch默认的回调函数并没有提供延迟激活的功能,但我们可以通过继承和修改相关类来实现这一需求。
以ReduceLROnPlateau
调度器为例,我们可以创建一个自定义的LRScheduler
类,添加epoch_start
参数来控制调度器的激活时机:
class CustomLRScheduler(LRScheduler):
def __init__(self, policy='WarmRestartLR', monitor='train_loss',
event_name="event_lr", step_every='epoch',
epoch_start=1, **kwargs):
super().__init__(policy=policy, monitor=monitor,
event_name=event_name, step_every=step_every)
self.epoch_start = epoch_start
vars(self).update(kwargs)
def on_epoch_end(self, net, **kwargs):
if len(net.history) <= self.epoch_start:
print(f"Learning rate scheduler not active until epoch {self.epoch_start}")
return
return super().on_epoch_end(net, **kwargs)
这种实现方式简洁有效,通过检查当前epoch数来决定是否执行调度逻辑。同样的方法也可以应用于EarlyStopping
等回调函数。
复杂学习率调度策略
PyTorch提供了多种学习率调度器,包括SequentialLR
这种可以组合多个调度策略的高级调度器。在skorch中,我们可以这样使用:
from torch.optim.lr_scheduler import SequentialLR, ConstantLR, ReduceLROnPlateau
# 定义阶段1:恒定学习率
scheduler1 = ConstantLR(optimizer, factor=1.0, total_iters=50)
# 定义阶段2:基于指标的学习率调整
scheduler2 = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
# 组合调度器
lr_scheduler = LRScheduler(
policy=SequentialLR,
schedulers=[scheduler1, scheduler2],
milestones=[50] # 在第50个epoch后切换到第二个调度器
)
这种组合调度策略特别适合需要分阶段训练的场景,比如先使用固定学习率进行预热,然后再根据验证指标动态调整学习率。
实际应用建议
- 学习率预热:在训练初期使用较低的学习率或固定学习率,有助于模型稳定收敛
- 分阶段训练:不同训练阶段可以采用不同的优化策略,如初期关注全局特征,后期关注细节优化
- 早停策略:合理设置早停的激活时机,避免过早终止训练
- 监控指标选择:根据任务特点选择合适的监控指标,分类任务常用准确率,回归任务可考虑自定义指标
通过灵活组合这些技术,我们可以更好地控制模型训练过程,提高训练效率和模型性能。skorch的模块化设计使得这些高级训练策略能够方便地集成到现有训练流程中。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0335- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58