skorch 1.1.0发布:强化scikit-learn兼容性与学习率调度功能
skorch是一个基于PyTorch的scikit-learn兼容神经网络库,它允许开发者使用熟悉的scikit-learn API来训练PyTorch模型。这个库弥合了深度学习框架PyTorch与传统机器学习库scikit-learn之间的鸿沟,使得PyTorch模型能够无缝集成到scikit-learn的工作流中。
核心更新内容
scikit-learn 1.6.0兼容性增强
skorch 1.1.0最重要的改进之一是全面支持scikit-learn 1.6.0及更高版本。所有神经网络类现在都继承自scikit-learn的BaseEstimator基类,分类模型额外继承ClassifierMixin,回归模型继承RegressorMixin。这一改变确保了skorch模型能够完全兼容最新的scikit-learn生态系统,包括管道(Pipeline)、网格搜索(GridSearchCV)等工具。
学习率调度功能改进
新版本对学习率调度器进行了多项增强:
-
当使用ReduceLROnPlateau调度器时,现在会默认记录学习率变化到网络历史中(通过net.history[:, 'event_lr']访问),这为模型训练过程提供了更详细的监控能力。
-
学习率调度现在支持按批次(batch)更新,而不仅仅是按周期(epoch)更新,这为精细控制训练过程提供了更多灵活性。
-
调度器的simulate()方法现在支持添加步骤参数,这对于模拟ReduceLROnPlateau等需要基于指标调整学习率的策略特别有用。
新增学习率调度示例
为了帮助用户更好地理解和使用学习率调度功能,项目新增了一个Jupyter Notebook示例,详细展示了如何在skorch中使用各种学习率调度策略。这个示例对于理解如何优化模型训练过程非常有价值。
问题修复
-
修复了NeuralNetBinaryClassifier与torch.compile的兼容性问题,这使得二进制分类模型现在可以正确使用PyTorch 2.0的编译优化功能。
-
移除了已弃用的skorch.callbacks.scoring.cache_net_infer功能,保持代码库的整洁性。
技术意义与应用价值
skorch 1.1.0的这些改进使得PyTorch模型能够更好地融入scikit-learn生态系统,特别是在以下方面:
-
对于需要将深度学习模型与传统机器学习模型结合使用的场景,如集成学习或模型堆叠(stacking),兼容性的提升使得工作流程更加顺畅。
-
学习率调度功能的增强为模型训练提供了更精细的控制能力,有助于提升模型性能并加速收敛。
-
新增的示例文档降低了学习曲线,使得新用户能够更快上手高级功能。
这些改进共同提升了skorch在工业生产环境中的适用性,使其成为连接PyTorch深度学习能力和scikit-learn机器学习工作流的理想桥梁。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00