PEFT项目中modules_to_save参数在Diffusers模型中的适配问题解析
在PEFT(Parameter-Efficient Fine-Tuning)项目的最新版本中,开发者在为Diffusers模型添加LoRA适配器时发现了一个值得关注的技术问题。当使用modules_to_save
参数指定需要保存的模块时,这些模块的参数会被意外冻结,导致训练过程中无法更新。
问题背景
PEFT库提供了一种高效的微调方法,特别是通过LoRA(Low-Rank Adaptation)技术,可以在保持预训练模型大部分参数不变的情况下,仅训练少量新增的参数。其中modules_to_save
参数的设计初衷是允许开发者指定某些模块保持完全可训练状态,而不是仅通过低秩适配器进行微调。
问题现象
在使用Diffusers库中的CogVideoXTransformer3DModel模型时,开发者发现即使明确将"proj_out"模块列在modules_to_save
中,该模块的所有参数(包括权重和偏置)在添加适配器后都会被设置为不可训练状态(requires_grad=False)。这与预期行为相悖,因为按照设计,这些参数应该保持可训练状态。
技术分析
深入分析问题根源,我们发现这是由于Diffusers模型架构的特殊性导致的。在标准实现中,PEFT会为modules_to_save
中指定的模块创建特殊的适配层,但这些适配层在Diffusers模型中没有被正确初始化为可训练状态。
具体表现为:
- 模块的原始参数(original_module)被冻结
- 新增的适配层参数(modules_to_save)也被错误地初始化为不可训练状态
解决方案
PEFT团队已经通过提交修复了这个问题。在最新版本中:
- 对于
modules_to_save
指定的模块,其适配层会被正确初始化为可训练状态 - 开发者不再需要手动设置参数的requires_grad属性
对于暂时无法升级的用户,可以采用临时解决方案:
transformer.proj_out.modules_to_save["default"].requires_grad_(True)
最佳实践建议
在使用PEFT进行模型微调时,特别是与Diffusers等特殊架构结合时,建议:
- 始终检查关键模块的训练状态
- 对于新版本引入的功能,先在小规模测试验证预期行为
- 关注官方更新日志,及时获取问题修复
这个问题展示了深度学习框架间交互时可能出现的微妙兼容性问题,也体现了开源社区快速响应和修复的价值。开发者在使用高级微调技术时,应当对底层机制有足够了解,以便快速定位和解决类似问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









