Async-profiler在虚拟线程场景下的性能分析与优化实践
2025-05-28 06:12:42作者:明树来
背景概述
在Java 21及更高版本中,虚拟线程(Virtual Threads)作为轻量级线程的实现被引入,显著提升了Java应用的并发能力。然而,当使用async-profiler这类性能分析工具对使用虚拟线程的应用进行剖析时,开发者可能会遇到两个典型问题:
- 采集到的性能数据与JFR(Java Flight Recorder)结果存在显著差异
- 分析过程中系统CPU使用率异常升高(如达到50%)
问题本质分析
这种现象的根本原因在于JVM本身的实现机制。在早期JDK版本(特别是21及之前)中,虚拟线程的状态转换会触发JVM TI(Tool Interface)事件,导致以下连锁反应:
- 性能开销剧增:每次虚拟线程切换都会产生额外的JVM TI事件处理开销
- 采样偏差:JFR默认过滤掉了虚拟机内部操作的采样,导致分析结果不完整
- 工具差异:async-profiler会捕获所有线程状态(包括虚拟线程转换),而JFR只记录Java代码执行时的采样
解决方案与实践建议
对于不同JDK版本,推荐采用以下解决方案:
JDK 23及更高版本
Oracle已在该版本中修复了相关问题,建议直接升级JDK版本,这是最彻底的解决方案。
JDK 21及早期版本
可通过以下JVM参数禁用相关功能:
-XX:-DoJVMTIVirtualThreadTransitions
技术深度解析
JFR采样的局限性
JFR的设计理念决定了它只会记录Java代码执行时的采样,这导致:
- 完全忽略GC活动
- 过滤掉虚拟线程状态转换
- 丢失native方法调用信息 在极端情况下,JFR可能遗漏超过90%的实际执行样本,造成性能分析的严重偏差。
async-profiler的优势
相比之下,async-profiler提供了更全面的视角:
- 完整记录所有线程状态
- 包含GC活动分析
- 捕获native调用栈
- 低开销采样机制
最佳实践建议
- 版本选择:生产环境推荐使用JDK 23+以获得最佳虚拟线程支持
- 参数调优:在无法升级JDK时,务必添加
-XX:-DoJVMTIVirtualThreadTransitions参数 - 工具互补:结合使用JFR和async-profiler可以获得更全面的性能视图
- 监控指标:分析时需关注系统CPU使用率变化,异常升高往往表明存在采样问题
总结
虚拟线程的引入为Java并发编程带来了革新,但也带来了新的性能分析挑战。通过理解底层机制、选择合适的工具组合,并应用正确的配置参数,开发者可以准确诊断虚拟线程应用的性能瓶颈,充分发挥其高并发的优势。
对于性能敏感型应用,建议建立基准测试体系,在JDK升级或配置变更前后进行系统性的性能对比,确保变更确实带来预期的改进效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217