APT-Hunter 使用教程
1. 项目介绍
APT-Hunter 是一个用于 Windows 事件日志的威胁猎杀工具,由紫色团队(Purple Team)的思想驱动,旨在检测隐藏在海量 Windows 事件日志中的 APT(高级持续威胁)运动,以减少发现可疑活动的时间。该工具使用预定义的检测规则,并专注于统计数据以揭示异常行为,从而有效地进行妥协评估。其输出结果以时间线形式呈现,可以直接在 Excel、Timeline Explorer、Timesketch 等工具中进行分析。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Python 3。然后,克隆 APT-Hunter 项目并安装所需的依赖库:
git clone https://github.com/ahmedkhlief/APT-Hunter.git
cd APT-Hunter
python3 -m pip install -r requirements.txt
2.2 使用示例
以下是一些基本的使用示例:
2.2.1 分析 EVTX 文件
你可以提供一个包含日志的目录或单个文件:
python3 APT-Hunter.py -p /opt/wineventlogs/ -o Project1 -allreport
2.2.2 添加时间范围
如果你想专注于特定的时间线,可以添加时间范围:
python3 APT-Hunter.py -p /opt/wineventlogs/ -o Project1 -allreport -start 2022-04-03 -end 2022-04-05T20:56
2.2.3 使用字符串或正则表达式进行搜索
你可以使用字符串或正则表达式进行搜索:
python3 APT-Hunter.py -hunt "psexec" -p /opt/wineventlogs/ -o Project2
python3 APT-Hunter.py -huntfile "(psexec|psexesvc)" -p /opt/wineventlogs/ -o Project2
2.2.4 使用 Sigma 规则
APT-Hunter 还支持使用 Sigma 规则进行搜索:
python3 APT-Hunter.py -sigma -rules rules.json -p /opt/wineventlogs/ -o Project2
3. 应用案例和最佳实践
3.1 威胁猎杀
APT-Hunter 主要用于威胁猎杀,特别是在没有 SIEM(安全信息和事件管理)解决方案的情况下。通过分析 Windows 事件日志,APT-Hunter 可以帮助安全团队快速识别潜在的 APT 活动,从而减少威胁的停留时间。
3.2 妥协评估
在进行妥协评估时,APT-Hunter 可以帮助安全团队快速识别系统中的异常行为,并生成详细的时间线报告,以便进一步分析和响应。
3.3 事件响应
在事件响应过程中,APT-Hunter 可以作为快速分析工具,帮助安全团队快速定位和理解事件的根本原因。
4. 典型生态项目
4.1 Timeline Explorer
Timeline Explorer 是一个强大的时间线分析工具,可以与 APT-Hunter 生成的 CSV 文件结合使用,帮助安全团队更深入地分析事件的时间线。
4.2 Timesketch
Timesketch 是一个开源的时间线分析工具,支持多种数据源,包括 APT-Hunter 生成的 CSV 文件。通过 Timesketch,安全团队可以更直观地查看和分析事件的时间线。
4.3 Sigma
Sigma 是一个通用的签名格式,用于描述日志文件中的安全检测规则。APT-Hunter 支持使用 Sigma 规则进行搜索,从而扩展了其检测能力。
通过结合这些工具,APT-Hunter 可以成为一个强大的威胁猎杀和事件响应工具链的一部分,帮助安全团队更有效地应对复杂的网络安全威胁。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









