使用Google Gemini Python SDK处理PDF文件的完整指南
2025-05-18 16:33:18作者:何举烈Damon
Google Gemini作为新一代多模态大模型,在处理PDF文档方面展现了强大的能力。本文将详细介绍如何通过Python SDK向Gemini模型传递PDF文件,并解析两种不同API路径的选择与实现方法。
Gemini API与Vertex AI API的区别
Google提供了两套Python SDK来访问Gemini模型,分别针对不同使用场景:
- Gemini API SDK (
google-generativeai):面向所有开发者,仅需API密钥即可使用,无需Google Cloud账号 - Vertex AI SDK (
google-cloud-aiplatform):专为Google Cloud Platform用户设计,深度集成GCP服务
选择建议:若项目已部署在GCP环境中,推荐使用Vertex AI SDK;若仅需快速接入Gemini能力,Gemini API SDK更为简便。
通过Vertex AI处理PDF文件
Vertex AI提供了直接处理云存储中PDF文件的能力:
import vertexai
from vertexai.generative_models import GenerativeModel, Part
# 初始化配置
vertexai.init(project="YOUR_PROJECT_ID", location="YOUR_LOCATION")
# 选择模型
model = GenerativeModel("gemini-1.5-pro-preview-0409")
# 构建PDF文件路径
gcs_path = "gs://YOUR_BUCKET_NAME/FILE_NAME.pdf"
# 发送请求
response = model.generate_content([
Part.from_uri(gcs_path, mime_type="application/pdf"),
"请总结这份文档的主要内容"
])
关键点说明:
- 文件需先上传至Google Cloud Storage
- 使用
Part.from_uri方法指定文件URI和MIME类型 - 需要配置GCP认证环境
通过Gemini API处理PDF文件
Gemini API提供了文件上传接口,但需注意PDF支持情况:
import google.generativeai as genai
# 配置API密钥
genai.configure(api_key="YOUR_API_KEY")
# 上传文件
uploaded_file = genai.upload_file(
path="/path/to/file.pdf",
display_name="示例PDF"
)
# 创建模型实例
model = genai.GenerativeModel("models/gemini-1.5-pro-latest")
# 生成内容
try:
response = model.generate_content([
"请分析这份PDF",
uploaded_file
])
finally:
# 清理上传的文件
genai.delete_file(uploaded_file.name)
注意事项:
- 当前某些Gemini模型版本可能不完全支持PDF格式
- 文件上传后会生成临时URI,使用后应及时删除
- 需要检查返回的MIME类型支持情况
最佳实践建议
- 格式兼容性:处理前确认模型版本对PDF的支持情况
- 文件大小:大文件建议先分块处理
- 错误处理:实现完善的异常捕获机制
- 资源清理:使用后及时删除上传的临时文件
- 区域限制:注意某些功能可能受地域限制
通过合理选择API路径并遵循上述实践,开发者可以高效地将PDF处理能力集成到各类应用中,充分发挥Gemini模型在多模态文档理解方面的优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178