Gemini 2.5 AI工程实践:结构化输出与函数调用实战指南
2025-06-05 18:26:41作者:范靓好Udolf
引言
在当今AI应用开发领域,如何让大语言模型输出结构化数据、如何让模型与外部系统交互,是开发者面临的两大核心挑战。本文将深入探讨Gemini 2.5 AI工程实践中关于结构化输出、函数调用和原生工具集成的关键技术。
一、结构化输出:从自由文本到精准数据
结构化输出是AI工程中的基础能力,它允许我们将模型的自由文本响应转换为预定义的结构化格式。
核心价值
- 数据提取:从非结构化文本中提取关键信息
- 系统集成:为下游API提供标准化数据格式
- 质量控制:确保响应包含所有必需字段
实战示例:食谱提取
class Recipe(BaseModel):
recipe_name: str
ingredients: List[str]
prep_time_minutes: int
difficulty: str # "easy", "medium", "hard"
servings: int
response = client.models.generate_content(
model=MODEL_ID,
contents="提供2个流行饼干食谱",
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=RecipeList,
),
)
这个示例展示了如何使用Pydantic模型定义输出结构,确保模型返回的数据完全符合我们的业务需求。
二、函数调用:连接AI与外部世界
函数调用能力让Gemini模型可以智能地决定何时调用开发者定义的函数,实现与外部系统的交互。
典型应用场景
- 实时数据获取(天气、股票等)
- 数据库查询
- 复杂计算任务
- 多步骤业务流程
实现模式
1. 基础函数调用流程
def get_weather(location: str) -> dict:
# 实际应用中这里会调用天气API
return {"temperature": 22, "condition": "sunny"}
# 定义函数声明
weather_function = {
"name": "get_weather",
"description": "获取指定位置的天气信息",
"parameters": {...}
}
# 发送请求并处理函数调用
response = client.models.generate_content(
model=MODEL_ID,
contents="东京天气如何?",
config=types.GenerateContentConfig(tools=[weather_function])
2. 自动函数调用(Python特有)
# 直接将函数传递给配置
config = types.GenerateContentConfig(tools=[get_weather, calculate_area])
response = client.models.generate_content(
model=MODEL_ID,
contents="东京天气和5x3米房间面积是多少?",
config=config
)
自动函数调用简化了开发流程,SDK会自动处理函数调用和结果整合。
三、原生工具:开箱即用的强大能力
Gemini提供了一系列原生工具,无需额外配置即可使用。
1. Google搜索集成
google_search_tool = types.Tool(google_search=types.GoogleSearch())
response = client.models.generate_content(
model=MODEL_ID,
contents="2025年可再生能源技术有哪些最新进展?",
config=types.GenerateContentConfig(tools=[google_search_tool])
2. URL内容分析
url_context_tool = types.Tool(url_context=types.UrlContext())
response = client.models.generate_content(
model=MODEL_ID,
contents="用3个要点总结https://www.python.org/about/的主要内容",
config=types.GenerateContentConfig(tools=[url_context_tool])
3. 代码执行能力
code_execution_tool = types.Tool(code_execution={})
response = client.models.generate_content(
model=MODEL_ID,
contents="用matplotlib绘制世界五大城市人口柱状图",
config=types.GenerateContentConfig(tools=[code_execution_tool])
四、实战练习
练习1:PDF发票数据提取
使用结构化输出从PDF发票中提取关键信息:
class InvoiceItem(BaseModel):
description: str
quantity: int
unit_price: float
total: float
# 上传PDF并提取结构化数据
练习2:计算器代理
实现四则运算函数并集成到Gemini中:
def add(a: float, b: float) -> dict:
return {"result": a + b}
# 测试复杂表达式:"计算(25 + 15) * 3 - 10"
练习3:数据搜索与可视化
结合Google搜索和代码执行工具:
# 搜索世界五大城市人口并可视化
五、最佳实践与注意事项
- 结构化输出:始终定义完整的Pydantic模型,包括字段类型和验证规则
- 函数调用:为函数提供清晰的文档字符串,帮助模型理解何时调用
- 错误处理:考虑函数调用失败时的回退方案
- 工具组合:合理搭配不同工具实现复杂工作流
- 安全考虑:特别注意代码执行工具的安全风险
结语
通过本文介绍的结构化输出、函数调用和原生工具,开发者可以构建出更强大、更可靠的AI应用。这些技术不仅提高了模型的实用性,也为AI系统集成提供了标准化方案。在实际项目中,建议从简单场景开始,逐步构建复杂的交互流程。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0131AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401