KG-BERT 项目使用教程
2024-09-18 05:58:35作者:侯霆垣
1. 项目目录结构及介绍
KG-BERT 项目的目录结构如下:
kg-bert/
├── data/
│ ├── WN11/
│ ├── FB13/
│ ├── FB15K/
│ ├── WN18RR/
│ ├── umls/
│ └── FB15k-237/
├── LICENSE
├── README.md
├── preprocessing.py
├── requirements.txt
├── run_bert_link_prediction.py
├── run_bert_relation_prediction.py
├── run_bert_triple_classifier.py
└── wiki.py
目录结构介绍
- data/: 包含多个子目录,每个子目录对应一个知识图谱数据集。每个数据集目录中包含
entity2text.txt
或entity2textlong.txt
文件,用于存储实体的文本描述,以及relation2text.txt
文件,用于存储关系的文本描述。 - LICENSE: 项目的开源许可证文件,采用 Apache-2.0 许可证。
- README.md: 项目的介绍文件,包含项目的基本信息、安装方法和使用说明。
- preprocessing.py: 数据预处理脚本,用于处理知识图谱数据。
- requirements.txt: 项目依赖的 Python 包列表。
- run_bert_link_prediction.py: 用于执行链接预测任务的启动脚本。
- run_bert_relation_prediction.py: 用于执行关系预测任务的启动脚本。
- run_bert_triple_classifier.py: 用于执行三元组分类任务的启动脚本。
- wiki.py: 可能用于处理维基数据的相关脚本。
2. 项目启动文件介绍
run_bert_triple_classifier.py
该脚本用于执行三元组分类任务。以下是启动该脚本的示例命令:
python run_bert_triple_classifier.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/WN11 --bert_model bert-base-uncased --max_seq_length 20 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 3.0 --output_dir /output_WN11/ --gradient_accumulation_steps 1 --eval_batch_size 512
run_bert_relation_prediction.py
该脚本用于执行关系预测任务。以下是启动该脚本的示例命令:
python3 run_bert_relation_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/FB15K --bert_model bert-base-cased --max_seq_length 25 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 20.0 --output_dir /output_FB15K/ --gradient_accumulation_steps 1 --eval_batch_size 512
run_bert_link_prediction.py
该脚本用于执行链接预测任务。以下是启动该脚本的示例命令:
python3 run_bert_link_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/WN18RR --bert_model bert-base-cased --max_seq_length 50 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 5.0 --output_dir /output_WN18RR/ --gradient_accumulation_steps 1 --eval_batch_size 5000
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的 Python 包及其版本。通过以下命令安装所有依赖:
pip install -r requirements.txt
data/
目录中的配置文件
- entity2text.txt 或 entity2textlong.txt: 包含知识图谱中实体的文本描述。
- relation2text.txt: 包含知识图谱中关系的文本描述。
这些文件用于为 BERT 模型提供实体和关系的文本输入,以便进行知识图谱的补全任务。
通过以上介绍,您可以更好地理解和使用 KG-BERT 项目。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4