KG-BERT 项目使用教程
2024-09-18 08:23:33作者:侯霆垣
1. 项目目录结构及介绍
KG-BERT 项目的目录结构如下:
kg-bert/
├── data/
│ ├── WN11/
│ ├── FB13/
│ ├── FB15K/
│ ├── WN18RR/
│ ├── umls/
│ └── FB15k-237/
├── LICENSE
├── README.md
├── preprocessing.py
├── requirements.txt
├── run_bert_link_prediction.py
├── run_bert_relation_prediction.py
├── run_bert_triple_classifier.py
└── wiki.py
目录结构介绍
- data/: 包含多个子目录,每个子目录对应一个知识图谱数据集。每个数据集目录中包含
entity2text.txt或entity2textlong.txt文件,用于存储实体的文本描述,以及relation2text.txt文件,用于存储关系的文本描述。 - LICENSE: 项目的开源许可证文件,采用 Apache-2.0 许可证。
- README.md: 项目的介绍文件,包含项目的基本信息、安装方法和使用说明。
- preprocessing.py: 数据预处理脚本,用于处理知识图谱数据。
- requirements.txt: 项目依赖的 Python 包列表。
- run_bert_link_prediction.py: 用于执行链接预测任务的启动脚本。
- run_bert_relation_prediction.py: 用于执行关系预测任务的启动脚本。
- run_bert_triple_classifier.py: 用于执行三元组分类任务的启动脚本。
- wiki.py: 可能用于处理维基数据的相关脚本。
2. 项目启动文件介绍
run_bert_triple_classifier.py
该脚本用于执行三元组分类任务。以下是启动该脚本的示例命令:
python run_bert_triple_classifier.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/WN11 --bert_model bert-base-uncased --max_seq_length 20 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 3.0 --output_dir /output_WN11/ --gradient_accumulation_steps 1 --eval_batch_size 512
run_bert_relation_prediction.py
该脚本用于执行关系预测任务。以下是启动该脚本的示例命令:
python3 run_bert_relation_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/FB15K --bert_model bert-base-cased --max_seq_length 25 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 20.0 --output_dir /output_FB15K/ --gradient_accumulation_steps 1 --eval_batch_size 512
run_bert_link_prediction.py
该脚本用于执行链接预测任务。以下是启动该脚本的示例命令:
python3 run_bert_link_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir /data/WN18RR --bert_model bert-base-cased --max_seq_length 50 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 5.0 --output_dir /output_WN18RR/ --gradient_accumulation_steps 1 --eval_batch_size 5000
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的 Python 包及其版本。通过以下命令安装所有依赖:
pip install -r requirements.txt
data/ 目录中的配置文件
- entity2text.txt 或 entity2textlong.txt: 包含知识图谱中实体的文本描述。
- relation2text.txt: 包含知识图谱中关系的文本描述。
这些文件用于为 BERT 模型提供实体和关系的文本输入,以便进行知识图谱的补全任务。
通过以上介绍,您可以更好地理解和使用 KG-BERT 项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1