Seurat项目中Leiden算法实现方式的比较与优化建议
引言
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包,其中细胞聚类是核心分析步骤之一。Leiden算法作为一种高效的图聚类方法,在Seurat中被用于细胞聚类分析。近期,社区对Seurat中Leiden算法的不同实现方式进行了深入讨论和性能比较。
背景
Leiden算法是一种基于模块度优化的图聚类算法,相比传统的Louvain算法,它能够保证更好的连通性。在Seurat中,Leiden算法的实现经历了从Python leidenalg包通过reticulate调用,到使用R包leidenbase的转变。
不同实现方式的比较
通过PBMC3K数据集的测试,研究者发现了三种Leiden算法实现方式的差异:
- leidenbase实现:当前Seurat默认实现方式
- igraph实现:通过BPCells包的cluster_graph_leiden函数调用
- reticulate实现:旧版Seurat通过Python leidenalg包的实现
测试结果表明,igraph实现不仅与旧版reticulate实现结果更为接近,而且在性能上表现更优。在HCABM40K数据集上,igraph实现比当前leidenbase实现快约4倍。
技术细节分析
igraph是一个成熟的图分析库,其Leiden算法实现经过高度优化。相比之下,leidenbase是一个相对较新的R包,可能在性能和算法细节上还有优化空间。从聚类结果来看,igraph实现更接近社区广泛使用的Python leidenalg包的结果,这对于结果的可重复性和跨平台比较具有重要意义。
优化建议
基于这些发现,Seurat开发团队考虑在未来的版本中:
- 首先添加igraph实现作为可选方案,保持向后兼容性
- 收集更多用户反馈后,评估是否将其设为默认实现
- 移除对leidenbase的依赖,简化包依赖关系
这种渐进式的改进策略既能为用户提供更多选择,又能确保分析的稳定性。
结论
算法实现的差异虽然看似微小,但在实际分析中可能产生显著影响。Seurat团队对这类核心算法的持续优化和验证,体现了对分析结果可靠性和计算效率的重视。对于用户而言,了解这些底层实现的差异有助于更好地解释分析结果,并在必要时选择合适的算法变体。
随着单细胞数据分析规模的不断扩大,这种对基础算法性能的优化将变得越来越重要,能够帮助研究人员在合理时间内完成更大规模的数据分析。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00