Seurat项目中Leiden算法实现方式的比较与优化建议
引言
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包,其中细胞聚类是核心分析步骤之一。Leiden算法作为一种高效的图聚类方法,在Seurat中被用于细胞聚类分析。近期,社区对Seurat中Leiden算法的不同实现方式进行了深入讨论和性能比较。
背景
Leiden算法是一种基于模块度优化的图聚类算法,相比传统的Louvain算法,它能够保证更好的连通性。在Seurat中,Leiden算法的实现经历了从Python leidenalg包通过reticulate调用,到使用R包leidenbase的转变。
不同实现方式的比较
通过PBMC3K数据集的测试,研究者发现了三种Leiden算法实现方式的差异:
- leidenbase实现:当前Seurat默认实现方式
- igraph实现:通过BPCells包的cluster_graph_leiden函数调用
- reticulate实现:旧版Seurat通过Python leidenalg包的实现
测试结果表明,igraph实现不仅与旧版reticulate实现结果更为接近,而且在性能上表现更优。在HCABM40K数据集上,igraph实现比当前leidenbase实现快约4倍。
技术细节分析
igraph是一个成熟的图分析库,其Leiden算法实现经过高度优化。相比之下,leidenbase是一个相对较新的R包,可能在性能和算法细节上还有优化空间。从聚类结果来看,igraph实现更接近社区广泛使用的Python leidenalg包的结果,这对于结果的可重复性和跨平台比较具有重要意义。
优化建议
基于这些发现,Seurat开发团队考虑在未来的版本中:
- 首先添加igraph实现作为可选方案,保持向后兼容性
- 收集更多用户反馈后,评估是否将其设为默认实现
- 移除对leidenbase的依赖,简化包依赖关系
这种渐进式的改进策略既能为用户提供更多选择,又能确保分析的稳定性。
结论
算法实现的差异虽然看似微小,但在实际分析中可能产生显著影响。Seurat团队对这类核心算法的持续优化和验证,体现了对分析结果可靠性和计算效率的重视。对于用户而言,了解这些底层实现的差异有助于更好地解释分析结果,并在必要时选择合适的算法变体。
随着单细胞数据分析规模的不断扩大,这种对基础算法性能的优化将变得越来越重要,能够帮助研究人员在合理时间内完成更大规模的数据分析。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









