MLRun v1.8.0-rc36版本发布:模型监控与功能增强
MLRun是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun提供了从数据准备到模型部署的全生命周期管理能力。
核心功能更新
本次发布的v1.8.0-rc36版本带来了多项重要改进,主要集中在模型监控和功能增强方面。
模型监控功能优化
在模型监控方面,开发团队做出了两项关键改进。首先,默认禁用了直方图应用中的Plotly图表输出,这一变化减少了不必要的资源消耗,提高了系统效率。其次,现在可以通过add_model方法直接添加输出参数,这为模型监控的配置提供了更大的灵活性。
数据流处理改进
对于使用V3IO流的数据处理场景,修复了控制器在处理提交偏移量(committed offset)时的问题。这一修复确保了数据流处理的准确性和可靠性,特别是在长时间运行的监控任务中。
功能增强与API优化
项目与工件管理
项目加载机制得到了改进,现在在从Git重新加载项目前需要先关闭当前项目,这一变更避免了潜在的资源冲突问题。在工件(Artifact)管理方面,确保了list_artifacts方法在设置limit参数时的正常工作,并且改进了结果的排序机制,使得工件列表更加有序和可预测。
废弃功能清理
本次版本继续推进API的清理工作,移除了多个已废弃的API接口,包括特征存储(Feature Store)中的一些过时功能。同时修复了last参数移除后可能引发的问题,保持了向后兼容性。
测试与稳定性提升
在测试方面,改进了多线程会话测试(test_sessions_are_different_per_thread_100),提高了测试的可靠性和准确性。对于Nuclio集成,现在在API调用中强制要求提供项目名称,增强了系统的健壮性。
总结
MLRun v1.8.0-rc36版本在模型监控、数据处理和系统稳定性方面做出了重要改进。这些变更不仅提升了平台的性能和可靠性,也为用户提供了更加流畅的开发体验。随着废弃功能的逐步清理和新功能的持续引入,MLRun正朝着更加成熟和稳定的方向发展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00