MLRun v1.8.0-rc32版本发布:模型监控与工作流通知增强
MLRun是一个开源的机器学习运维平台,旨在简化机器学习工作流的构建、部署和管理。它提供了从数据准备到模型部署的全生命周期管理能力,特别适合需要大规模部署机器学习模型的企业用户。本次发布的v1.8.0-rc32版本带来了多项功能增强和问题修复,主要集中在模型监控和工作流通知系统方面。
核心功能增强
模型监控能力提升
本次版本对模型监控功能进行了显著增强。控制器基础周期现在可以通过查找表进行定义,这为不同场景下的监控需求提供了更灵活的配置方式。开发团队还修复了模型评估功能与监控端点名称的兼容性问题,使得评估过程能够正确识别和使用指定的监控端点。
在告警配置方面,文档字符串得到了修正,确保了开发者能够获得准确的使用指导。这些改进使得模型监控系统更加健壮和易用,为生产环境中的模型性能跟踪提供了更好的支持。
工作流通知系统优化
通知系统是本版本的另一个重点改进领域。现在系统会在运行监控循环中自动更新工作流的结束时间,确保时间记录的准确性。更重要的是,系统现在能够始终从运行的工作流中提取项目的通知器配置,这解决了之前在某些情况下通知可能丢失的问题。
这些改进使得工作流状态变更的通知更加可靠,帮助团队及时了解关键任务的执行情况,特别是在自动化流水线中。
依赖项与安全更新
在依赖管理方面,本次更新升级了多个关键库,包括加密相关的cryptography包。安全方面的一个重要修复是解决了CE部署器中subprocess.Popen的不安全使用问题,消除了潜在的安全风险。
Python兼容性方面,移除了对Pipelines适配器的Python 3.12限制,为使用最新Python版本的用户提供了更好的支持。同时,KFP(Kubeflow Pipelines)相关镜像也得到了更新,确保与最新组件的兼容性。
文档与用户体验
文档团队删除了"批处理运行和工作流"部分中关于通知的过时内容,确保用户获得准确的信息。Grafana监控部分的描述也针对v1.8版本进行了更新,帮助用户更好地配置和使用监控仪表板。
UI方面同步进行了多项改进和问题修复,提升了整体用户体验。这些更新使得平台更加直观易用,降低了新用户的学习曲线。
总结
MLRun v1.8.0-rc32版本通过增强模型监控和工作流通知功能,进一步提升了平台的可靠性和实用性。安全更新和依赖项升级确保了系统的稳定运行,而文档和UI的改进则优化了用户体验。这些变化使得MLRun在机器学习运维领域的能力更加全面,为企业的AI项目提供了更强大的支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00