MLRun v1.8.0-rc32版本发布:模型监控与工作流通知增强
MLRun是一个开源的机器学习运维平台,旨在简化机器学习工作流的构建、部署和管理。它提供了从数据准备到模型部署的全生命周期管理能力,特别适合需要大规模部署机器学习模型的企业用户。本次发布的v1.8.0-rc32版本带来了多项功能增强和问题修复,主要集中在模型监控和工作流通知系统方面。
核心功能增强
模型监控能力提升
本次版本对模型监控功能进行了显著增强。控制器基础周期现在可以通过查找表进行定义,这为不同场景下的监控需求提供了更灵活的配置方式。开发团队还修复了模型评估功能与监控端点名称的兼容性问题,使得评估过程能够正确识别和使用指定的监控端点。
在告警配置方面,文档字符串得到了修正,确保了开发者能够获得准确的使用指导。这些改进使得模型监控系统更加健壮和易用,为生产环境中的模型性能跟踪提供了更好的支持。
工作流通知系统优化
通知系统是本版本的另一个重点改进领域。现在系统会在运行监控循环中自动更新工作流的结束时间,确保时间记录的准确性。更重要的是,系统现在能够始终从运行的工作流中提取项目的通知器配置,这解决了之前在某些情况下通知可能丢失的问题。
这些改进使得工作流状态变更的通知更加可靠,帮助团队及时了解关键任务的执行情况,特别是在自动化流水线中。
依赖项与安全更新
在依赖管理方面,本次更新升级了多个关键库,包括加密相关的cryptography包。安全方面的一个重要修复是解决了CE部署器中subprocess.Popen的不安全使用问题,消除了潜在的安全风险。
Python兼容性方面,移除了对Pipelines适配器的Python 3.12限制,为使用最新Python版本的用户提供了更好的支持。同时,KFP(Kubeflow Pipelines)相关镜像也得到了更新,确保与最新组件的兼容性。
文档与用户体验
文档团队删除了"批处理运行和工作流"部分中关于通知的过时内容,确保用户获得准确的信息。Grafana监控部分的描述也针对v1.8版本进行了更新,帮助用户更好地配置和使用监控仪表板。
UI方面同步进行了多项改进和问题修复,提升了整体用户体验。这些更新使得平台更加直观易用,降低了新用户的学习曲线。
总结
MLRun v1.8.0-rc32版本通过增强模型监控和工作流通知功能,进一步提升了平台的可靠性和实用性。安全更新和依赖项升级确保了系统的稳定运行,而文档和UI的改进则优化了用户体验。这些变化使得MLRun在机器学习运维领域的能力更加全面,为企业的AI项目提供了更强大的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00