探索 SSRF 弱点的利器:autoSSRF
在网络安全的世界里,服务器端请求伪造(SSRF)是一种常见且危害严重的漏洞。它允许攻击者利用服务器的信任关系,发起恶意请求。为了帮助安全研究人员和开发者更高效地检测此类漏洞,我们向您推荐一款名为 autoSSRF 的开源工具。这款工具以其智能的模糊测试和上下文感知动态payload生成而独树一帜。
项目介绍
autoSSRF 是一个专为大规模 SSRF 漏洞识别设计的自动化工具。它结合了智能模糊测试和动态payload生成两大特性,能够在不影响正常请求的情况下,对潜在的 SSRF 参数进行精准扫描。通过与 ProjectDiscovery 的交互式服务组件 interactsh 集成,可以准确地识别出真实存在的 SSRF 痕迹,有效避免了误报。
项目技术分析
1. 智能模糊测试
不同于一般的模糊测试工具,autoSSRF 仅针对与 SSRF 相关的参数(如 "?url="、"?uri=" 等)进行定向模糊测试。这确保了在测试过程中,原始URL的功能不会被破坏,避免了因盲目覆盖所有查询参数导致的误判。
2. 上下文感知动态payload生成
当遇到如 https://host.com/?fileURL=https://authorizedhost.com 类似的URL时,autoSSRF 能够识别出 authorizedhost.com 可能是应用的白名单域名,并据此生成有针对性的payload,试图绕过白名单检查。例如,它可能会尝试 http://authorizedhost.attacker.com 或 http://authorizedhost%252F@attacker.com 这样的变体。
项目及技术应用场景
无论是在黑盒测试还是灰盒测试中,autoSSRF 都能发挥巨大作用。它可以广泛应用于以下场景:
- 对企业内部大量接口或API的安全性进行全面扫描。
- 在渗透测试期间快速定位可能的 SSRF 漏洞。
- 开发者进行自检,以确保新发布的功能不携带 SSRF 风险。
项目特点
- 高精度检测 —— 基于 interactsh 的 OOB 检测方法,几乎无假阳性报告。
- 智能策略 —— 针对性模糊测试和上下文感知的payload生成。
- 简单易用 —— 提供简洁的命令行界面,方便单个或批量URL的测试。
- 可扩展性强 —— 依赖项易于安装,适应不同环境需求。
要开始使用,请按照项目中的说明进行克隆和安装,然后运行提供的命令来启动扫描。不论是单独测试某个URL还是批量处理文件,autoSSRF 都将为你提供强大的支持。
总之,autoSSRF 是一款值得信赖的 SSRF 扫描工具,无论你是安全专家还是普通开发人员,都能从中受益。立即加入我们的行列,让 SSRF 漏洞无所遁形!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00