RDKit中手性亚砜立体构型解析问题的分析与解决
问题背景
在化学信息学领域,分子立体构型的正确解析对于药物设计和分子模拟至关重要。RDKit作为一款广泛使用的开源化学信息学工具包,在处理分子结构时可能会遇到一些特殊情况下的立体构型解析问题。近期发现的一个典型问题是关于手性亚砜(S=O)基团在解析过程中丢失立体构型信息的现象。
问题现象
当使用RDKit解析包含手性亚砜结构的分子时,特别是在V3000格式的mol文件中,分子中的立体构型信息会在解析过程中丢失。具体表现为:
- 输入分子明确指定了硫原子(S)的绝对构型(CW/顺时针)
- 分子结构中包含硫原子与氧原子的双键(S=O)以及与碳原子的单键(S-C)
- 在mol文件中通过
MDLV30/STEABS标签明确标记了硫原子的绝对构型 - 解析后输出的分子结构中,硫原子的立体构型信息消失
技术分析
通过深入分析发现,这个问题源于RDKit的立体构型解析流程中的几个关键环节:
-
初始解析阶段:未经过sanitize处理的分子能够正确保留立体构型信息,硫原子被标记为CW构型,并且立体基团信息也被正确解析。
-
sanitize处理阶段:在分子结构规范化过程中,立体构型信息被错误地移除。这可能是由于立体构型处理逻辑未能正确处理硫原子作为手性中心的情况。
-
立体构型分配机制:RDKit的立体构型分配算法可能没有充分考虑硫原子作为手性中心的情况,特别是在硫原子同时连接双键氧原子和单键碳原子的复杂环境中。
解决方案
该问题已在RDKit的最新版本(2025.03.1及之后)中得到修复。主要改进包括:
-
立体构型解析逻辑优化:改进了对硫原子手性中心的识别和处理能力。
-
sanitize流程增强:确保在分子结构规范化过程中不会错误地移除有效的立体构型信息。
-
V3000格式支持完善:更好地处理mol文件中通过
MDLV30/STEABS标签指定的立体构型信息。
实际影响
对于使用较旧版本(如2024.09.6)的用户,在处理含手性亚砜结构的分子时需要注意:
-
立体构型信息可能会丢失,影响后续的分子比对、构象分析等操作。
-
建议升级到最新版本以获得完整的立体构型支持。
-
如果暂时无法升级,可以考虑在sanitize之前提取立体构型信息,或在sanitize之后手动重新设置。
结论
手性分子的正确处理是化学信息学的核心挑战之一。RDKit通过持续改进,不断增强对各种特殊立体构型(包括手性亚砜)的支持能力。这一问题的解决体现了开源社区对化学信息学工具精确性的不懈追求,也为处理类似复杂立体化学问题提供了参考方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00