PEFT项目中的LoRA模型加载与词嵌入尺寸匹配问题
概述
在使用PEFT(Parameter-Efficient Fine-Tuning)进行大语言模型微调时,特别是采用LoRA(Low-Rank Adaptation)方法时,开发者可能会遇到模型加载时的尺寸不匹配问题。本文将深入分析这一问题的成因,并提供专业解决方案。
问题现象
当使用PEFT训练一个包含可训练词嵌入层(embed_tokens)和语言模型头(lm_head)的LoRA模型后,在加载模型检查点时,系统会报告尺寸不匹配错误。具体表现为:
- 检查点中
embed_tokens
层的权重尺寸为[33004, 4096] - 当前模型中的对应层尺寸为[32000, 4096]
根本原因分析
这一问题源于以下几个技术细节:
-
词表扩展:在训练过程中,开发者通过
model.resize_token_embeddings(len(tokenizer))
扩展了模型的词表大小,从基础的32000增加到33004个token。 -
模块保存设置:在PEFT配置中指定了
modules_to_save = ["lm_head", "embed_tokens"]
,这意味着这两个层的参数会被完整保存而非仅保存低秩适配部分。 -
加载时尺寸不匹配:当直接加载基础模型时,其词表大小恢复为默认的32000,与检查点中保存的33004不匹配。
解决方案
正确的模型加载流程应包含以下步骤:
- 加载基础模型:
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-chat-hf",
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
- 加载训练时使用的tokenizer并调整模型尺寸:
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("<PATH-TO-YOUR-REPO>")
model.resize_token_embeddings(len(tokenizer))
- 加载PEFT适配器:
from peft import PeftModel
model = PeftModel.from_pretrained(model, "<PATH-TO-YOUR-REPO>")
技术建议
-
关于LoRA秩的选择:虽然技术上可以使用高达1024的秩(r),但这会显著增加可训练参数数量(本例中达到总参数的21%),几乎接近全参数微调的效果。建议从较小的秩(如8或16)开始,逐步增加以平衡效果和效率。
-
词表扩展注意事项:当扩展词表时,新增token的嵌入会被随机初始化,需要在训练数据中给予足够多的曝光机会,以确保它们能学到有意义的表示。
-
检查点优化:对于包含完整参数层(如embed_tokens)的PEFT模型,检查点会相对较大。可以考虑:
- 使用量化技术减小模型大小
- 仅在必要时保存完整参数层
- 定期清理中间检查点
总结
PEFT框架为大型语言模型的高效微调提供了强大支持,但在处理模型结构变化(如词表扩展)时需要特别注意前后一致性。通过理解模型架构和PEFT的工作原理,开发者可以避免常见的陷阱,构建更加稳健的微调流程。对于需要大幅修改模型结构的任务,建议建立完整的训练-验证-部署流程文档,确保各环节的参数一致性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0365Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++091AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









