Image-Adaptive-3DLUT 项目使用教程
2024-09-15 06:44:16作者:齐冠琰
1. 项目目录结构及介绍
Image-Adaptive-3DLUT/
├── demo_images/
├── figures/
├── local_tone_mapping/
├── pretrained_models/
├── trilinear_c/
├── trilinear_cpp/
├── utils/
├── visualization_lut/
├── IdentityLUT33.txt
├── IdentityLUT64.txt
├── LICENSE
├── README.md
├── average_psnr_ssim.m
├── datasets.py
├── demo_eval.py
├── image_adaptive_lut_evaluation.py
├── image_adaptive_lut_train_paired.py
├── image_adaptive_lut_train_unpaired.py
├── models/
├── models_x/
├── requirements.txt
├── ssim.m
└── torchvision_x_functional.py
目录结构介绍
- demo_images/: 存放演示图像的目录。
- figures/: 存放项目相关图表的目录。
- local_tone_mapping/: 存放局部色调映射相关文件的目录。
- pretrained_models/: 存放预训练模型的目录。
- trilinear_c/: 存放三线性插值的C语言实现文件的目录。
- trilinear_cpp/: 存放三线性插值的C++实现文件的目录。
- utils/: 存放工具脚本的目录。
- visualization_lut/: 存放3D LUT可视化相关文件的目录。
- IdentityLUT33.txt: 33维的标识LUT文件。
- IdentityLUT64.txt: 64维的标识LUT文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- average_psnr_ssim.m: 计算PSNR和SSIM的MATLAB脚本。
- datasets.py: 数据集处理脚本。
- demo_eval.py: 演示评估脚本。
- image_adaptive_lut_evaluation.py: 图像自适应3D LUT评估脚本。
- image_adaptive_lut_train_paired.py: 成对训练脚本。
- image_adaptive_lut_train_unpaired.py: 非成对训练脚本。
- models/: 存放模型定义文件的目录。
- models_x/: 存放模型定义文件的目录(适用于PyTorch 1.x版本)。
- requirements.txt: 项目依赖文件。
- ssim.m: 计算SSIM的MATLAB脚本。
- torchvision_x_functional.py: 自定义的torchvision功能脚本。
2. 项目的启动文件介绍
demo_eval.py
该脚本用于演示和评估图像自适应3D LUT的效果。它加载预训练模型并对输入图像进行处理,输出增强后的图像。
image_adaptive_lut_evaluation.py
该脚本用于评估训练好的图像自适应3D LUT模型。它加载模型并对测试集中的图像进行处理,计算并输出评估指标(如PSNR、SSIM等)。
image_adaptive_lut_train_paired.py
该脚本用于成对训练图像自适应3D LUT模型。它使用成对的数据集进行训练,生成适用于图像增强的3D LUT模型。
image_adaptive_lut_train_unpaired.py
该脚本用于非成对训练图像自适应3D LUT模型。它使用非成对的数据集进行训练,生成适用于图像增强的3D LUT模型。
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的Python依赖包。使用以下命令安装依赖:
pip install -r requirements.txt
LICENSE
该文件包含了项目的许可证信息,项目采用Apache-2.0许可证。
README.md
该文件是项目的介绍和使用说明,包含了项目的背景、使用方法、数据集下载链接等信息。
average_psnr_ssim.m
和 ssim.m
这两个MATLAB脚本用于计算图像的PSNR和SSIM指标,用于评估图像增强效果。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0137AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
232
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
78

暂无简介
Dart
534
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648