Image-Adaptive-3DLUT 项目使用教程
2024-09-15 15:06:55作者:齐冠琰
1. 项目目录结构及介绍
Image-Adaptive-3DLUT/
├── demo_images/
├── figures/
├── local_tone_mapping/
├── pretrained_models/
├── trilinear_c/
├── trilinear_cpp/
├── utils/
├── visualization_lut/
├── IdentityLUT33.txt
├── IdentityLUT64.txt
├── LICENSE
├── README.md
├── average_psnr_ssim.m
├── datasets.py
├── demo_eval.py
├── image_adaptive_lut_evaluation.py
├── image_adaptive_lut_train_paired.py
├── image_adaptive_lut_train_unpaired.py
├── models/
├── models_x/
├── requirements.txt
├── ssim.m
└── torchvision_x_functional.py
目录结构介绍
- demo_images/: 存放演示图像的目录。
- figures/: 存放项目相关图表的目录。
- local_tone_mapping/: 存放局部色调映射相关文件的目录。
- pretrained_models/: 存放预训练模型的目录。
- trilinear_c/: 存放三线性插值的C语言实现文件的目录。
- trilinear_cpp/: 存放三线性插值的C++实现文件的目录。
- utils/: 存放工具脚本的目录。
- visualization_lut/: 存放3D LUT可视化相关文件的目录。
- IdentityLUT33.txt: 33维的标识LUT文件。
- IdentityLUT64.txt: 64维的标识LUT文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- average_psnr_ssim.m: 计算PSNR和SSIM的MATLAB脚本。
- datasets.py: 数据集处理脚本。
- demo_eval.py: 演示评估脚本。
- image_adaptive_lut_evaluation.py: 图像自适应3D LUT评估脚本。
- image_adaptive_lut_train_paired.py: 成对训练脚本。
- image_adaptive_lut_train_unpaired.py: 非成对训练脚本。
- models/: 存放模型定义文件的目录。
- models_x/: 存放模型定义文件的目录(适用于PyTorch 1.x版本)。
- requirements.txt: 项目依赖文件。
- ssim.m: 计算SSIM的MATLAB脚本。
- torchvision_x_functional.py: 自定义的torchvision功能脚本。
2. 项目的启动文件介绍
demo_eval.py
该脚本用于演示和评估图像自适应3D LUT的效果。它加载预训练模型并对输入图像进行处理,输出增强后的图像。
image_adaptive_lut_evaluation.py
该脚本用于评估训练好的图像自适应3D LUT模型。它加载模型并对测试集中的图像进行处理,计算并输出评估指标(如PSNR、SSIM等)。
image_adaptive_lut_train_paired.py
该脚本用于成对训练图像自适应3D LUT模型。它使用成对的数据集进行训练,生成适用于图像增强的3D LUT模型。
image_adaptive_lut_train_unpaired.py
该脚本用于非成对训练图像自适应3D LUT模型。它使用非成对的数据集进行训练,生成适用于图像增强的3D LUT模型。
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的Python依赖包。使用以下命令安装依赖:
pip install -r requirements.txt
LICENSE
该文件包含了项目的许可证信息,项目采用Apache-2.0许可证。
README.md
该文件是项目的介绍和使用说明,包含了项目的背景、使用方法、数据集下载链接等信息。
average_psnr_ssim.m 和 ssim.m
这两个MATLAB脚本用于计算图像的PSNR和SSIM指标,用于评估图像增强效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249