SpatialDE 项目使用教程
2024-09-25 23:57:01作者:邓越浪Henry
1. 项目介绍
SpatialDE 是一个用于识别空间变异基因(Spatially Variable Genes, SVG)的方法。它能够从空间转录组学数据中检测出在空间坐标上显著依赖的基因表达模式。SpatialDE 的主要特点包括:
- 无监督:无需预定义空间区域。
- 非参数和非线性表达模式:能够识别复杂的表达模式。
- 自动组织学:基于空间共表达的基因分组。
- 极速:在普通计算机上几分钟内完成转录组范围的测试。
SpatialDE 主要通过 Python 3 包实现,并且提供了 R 语言的封装接口。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3。然后,通过 pip 安装 SpatialDE:
pip install spatialde
使用示例
以下是一个简单的使用示例,展示如何使用 SpatialDE 进行空间变异基因的检测:
# 导入必要的库
import pandas as pd
import NaiveDE
import SpatialDE
# 读取数据
counts = pd.read_csv('Analysis/MouseOB/data/Rep11_MOB_0.csv', index_col=0)
counts = counts.T[counts.sum(0) >= 3].T # 过滤低表达基因
sample_info = pd.read_csv('Analysis/MouseOB/MOB_sample_info.csv', index_col=0)
counts = counts.loc[sample_info.index] # 对齐计数矩阵与元数据表
# 数据预处理
norm_expr = NaiveDE.stabilize(counts.T).T
resid_expr = NaiveDE.regress_out(sample_info, norm_expr.T, 'np.log(total_counts)').T
# 运行 SpatialDE
X = sample_info[['x', 'y']]
results = SpatialDE.run(X, resid_expr)
# 查看结果
print(results.head())
3. 应用案例和最佳实践
应用案例
SpatialDE 已经被应用于多个研究项目中,包括:
- 乳腺癌转录组研究:在乳腺癌组织中识别空间变异基因。
- 青蛙发育时间序列:分析 Xenopus 发育过程中的 RNA-seq 数据。
- MERFISH 技术:在单细胞水平上分析基因表达。
- 小鼠嗅球切片:使用空间转录组学技术分析小鼠嗅球切片。
- SeqFISH 技术:分析小鼠海马区的单细胞表达数据。
最佳实践
- 数据预处理:确保数据经过适当的过滤和标准化处理。
- 模型选择:根据数据特点选择合适的模型参数。
- 结果解释:结合生物学背景解释检测到的空间变异基因。
4. 典型生态项目
SpatialDE 作为一个开源项目,与其他空间转录组学工具和数据分析平台有良好的兼容性。以下是一些典型的生态项目:
- Bioconductor:提供了 R 语言的 SpatialDE 封装包,方便 R 用户使用。
- Git LFS:用于管理大型数据文件,确保数据集的完整性和可访问性。
- Jupyter Notebook:提供了交互式的数据分析环境,方便用户进行探索性分析。
通过这些工具和平台的结合,SpatialDE 能够更好地服务于空间转录组学研究,推动相关领域的发展。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492