OpenLLmetry项目中OpenAI助手消息分类问题的技术解析
2025-06-06 09:54:08作者:齐添朝
背景介绍
OpenLLmetry是一个开源的观测性工具包,专门用于监控和分析生成式AI系统的运行情况。在OpenLLmetry的OpenAI Instrumentation组件中,存在一个关于消息分类的潜在问题,这可能会影响对AI助手交互过程的准确监控。
问题本质
在OpenAI助手的交互过程中,消息通常分为几种角色:
- 系统消息(System):定义助手的行为和规则
 - 用户消息(User):用户输入的查询或指令
 - 助手消息(Assistant):AI助手的回复
 
当前实现中,所有非系统消息都被错误地归类为"completions"(完成),即AI助手的输出。这导致了用户消息也被标记为AI生成内容,与实际情况不符。
技术影响
这种错误的分类会带来几个问题:
- 监控数据失真:用户输入被错误计入AI生成内容,影响用量统计和分析
 - 追踪困难:难以区分对话中哪些是用户原始输入,哪些是AI响应
 - 计费混淆:如果基于监控数据进行计费,可能导致计算错误
 
解决方案分析
正确的实现应该基于消息的"role"属性进行区分:
- 系统消息应始终标记为"prompt"(提示)
 - 用户消息也应标记为"prompt"
 - 只有助手消息才应标记为"completion"
 
这种分类更符合实际交互逻辑,也与OpenAI API的设计理念一致。
实现建议
在代码层面,可以通过以下方式改进:
for i, message in enumerate(messages):
    if message.role == "system":
        span.set_attribute(f"gen_ai.prompt.{i}.role", message.role)
        span.set_attribute(f"gen_ai.prompt.{i}.content", message.content)
    elif message.role == "user":
        span.set_attribute(f"gen_ai.prompt.{i}.role", message.role)
        span.set_attribute(f"gen_ai.prompt.{i}.content", message.content)
    elif message.role == "assistant":
        span.set_attribute(f"gen_ai.completions.{i}.role", message.role)
        span.set_attribute(f"gen_ai.completions.{i}.content", message.content)
未来考量
随着OpenLLmetry向事件型监控架构演进,这类属性的命名和分类可能会有所调整。但基本原则不变:必须准确反映消息的来源和性质。建议在架构演进过程中保持这一分类逻辑的一致性。
总结
准确的消息分类对于AI系统的可观测性至关重要。OpenLLmetry作为监控工具,应当确保其数据采集的准确性,以便开发者能够基于可靠的数据进行分析和优化。这一改进虽然看似微小,但对于确保监控数据的真实性和可用性具有重要意义。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447