OpenLLmetry项目中OpenAI助手消息分类问题的技术解析
2025-06-06 02:22:08作者:齐添朝
背景介绍
OpenLLmetry是一个开源的观测性工具包,专门用于监控和分析生成式AI系统的运行情况。在OpenLLmetry的OpenAI Instrumentation组件中,存在一个关于消息分类的潜在问题,这可能会影响对AI助手交互过程的准确监控。
问题本质
在OpenAI助手的交互过程中,消息通常分为几种角色:
- 系统消息(System):定义助手的行为和规则
- 用户消息(User):用户输入的查询或指令
- 助手消息(Assistant):AI助手的回复
当前实现中,所有非系统消息都被错误地归类为"completions"(完成),即AI助手的输出。这导致了用户消息也被标记为AI生成内容,与实际情况不符。
技术影响
这种错误的分类会带来几个问题:
- 监控数据失真:用户输入被错误计入AI生成内容,影响用量统计和分析
- 追踪困难:难以区分对话中哪些是用户原始输入,哪些是AI响应
- 计费混淆:如果基于监控数据进行计费,可能导致计算错误
解决方案分析
正确的实现应该基于消息的"role"属性进行区分:
- 系统消息应始终标记为"prompt"(提示)
- 用户消息也应标记为"prompt"
- 只有助手消息才应标记为"completion"
这种分类更符合实际交互逻辑,也与OpenAI API的设计理念一致。
实现建议
在代码层面,可以通过以下方式改进:
for i, message in enumerate(messages):
if message.role == "system":
span.set_attribute(f"gen_ai.prompt.{i}.role", message.role)
span.set_attribute(f"gen_ai.prompt.{i}.content", message.content)
elif message.role == "user":
span.set_attribute(f"gen_ai.prompt.{i}.role", message.role)
span.set_attribute(f"gen_ai.prompt.{i}.content", message.content)
elif message.role == "assistant":
span.set_attribute(f"gen_ai.completions.{i}.role", message.role)
span.set_attribute(f"gen_ai.completions.{i}.content", message.content)
未来考量
随着OpenLLmetry向事件型监控架构演进,这类属性的命名和分类可能会有所调整。但基本原则不变:必须准确反映消息的来源和性质。建议在架构演进过程中保持这一分类逻辑的一致性。
总结
准确的消息分类对于AI系统的可观测性至关重要。OpenLLmetry作为监控工具,应当确保其数据采集的准确性,以便开发者能够基于可靠的数据进行分析和优化。这一改进虽然看似微小,但对于确保监控数据的真实性和可用性具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178