OpenBMB/OmniLMM项目中VLLM显存溢出问题的分析与解决方案
2025-05-12 11:45:09作者:董宙帆
问题背景
在OpenBMB/OmniLMM项目中使用VLLM推理引擎运行minicpmv模型时,开发者遇到了典型的CUDA显存溢出问题。错误日志显示GPU 0的23.55GB显存中仅有1.87GB空闲,而PyTorch尝试分配2GB显存时失败。这类问题在大型语言模型推理过程中较为常见,特别是在资源受限的环境下。
技术分析
显存分配机制
现代深度学习框架如PyTorch采用动态显存分配策略。当执行softmax等需要临时缓冲区的操作时,框架会尝试分配所需显存。在本次案例中,系统需要2GB连续显存空间,但实际可用显存碎片化严重,导致分配失败。
关键影响因素
- 模型规模:minicpmv作为多模态大模型,其参数规模和中间激活值会占用大量显存
- 推理配置:默认的max_model_len设置可能过高
- 显存碎片:长时间运行的推理服务可能出现显存碎片化问题
解决方案
直接解决方案
最有效的解决方法是调整VLLM的初始化参数:
llm = vllm.LLM(model="minicpmv", max_model_len=2048)
通过降低max_model_len参数,可以显著减少推理过程中所需的显存量。
进阶优化建议
-
显存管理策略:
- 设置环境变量
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True来改善显存碎片问题 - 考虑使用
torch.cuda.empty_cache()手动清理缓存
- 设置环境变量
-
模型优化:
- 启用量化推理(如8-bit或4-bit量化)
- 使用模型并行技术将负载分配到多个GPU
-
监控工具:
- 使用
nvidia-smi实时监控显存使用情况 - 通过PyTorch内置工具分析显存分配模式
- 使用
预防措施
为避免类似问题再次发生,建议开发者:
- 在模型部署前进行充分的显存需求评估
- 建立显存使用监控和提醒机制
- 针对不同硬件配置准备多套推理参数方案
- 定期进行显存碎片整理
总结
OpenBMB/OmniLMM项目中遇到的这个显存问题反映了大型模型推理过程中的常见挑战。通过合理配置推理参数、优化显存管理策略以及采用量化技术,开发者可以在有限硬件资源下实现稳定高效的大模型推理服务。理解这些优化方法的原理对于深度学习工程师处理类似问题具有普遍指导意义。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258