首页
/ 推荐开源项目:BRECQ - 打破后训练量化限制的新方法

推荐开源项目:BRECQ - 打破后训练量化限制的新方法

2024-05-26 01:28:48作者:裴锟轩Denise

1、项目介绍

BRECQ 是一个基于 PyTorch 的实现,源自于 ICLR 2021 论文《BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction》。该项目旨在通过块重建技术,推动深度学习模型的后训练量化(post-training quantization)达到新的性能高度。BRECQ 提供了一种优化策略,不仅适用于权重量化,还支持激活量化的处理,以在保持低计算复杂度的同时提高量化模型的准确性。

2、项目技术分析

BRECQ 的核心是它的块重建技术,它允许在不改变原始网络结构的情况下对权重和激活进行精细的量化。通过使用多GPU同步重建,该方法可以有效地应对大规模模型和大量数据样本。项目中还特别注意了数据并行化的问题,避免了简单地使用 torch.nn.DataParallel 或 DDP,而是通过手动调用 torch.distributed.allreduce 来确保梯度、激活尺度等关键信息的一致性。

此外,项目提供了预训练模型,可以通过 torch.hub 方便地加载和使用。例如,只需一行代码就可以加载预训练的 ResNet-18 模型:

res18 = torch.hub.load('yhhhli/BRECQ', model='resnet18', pretrained=True)

3、项目及技术应用场景

BRECQ 技术特别适合于移动设备上的深度学习应用,因为它能有效减少模型的存储空间和计算需求,而这些资源在嵌入式设备上通常很有限。例如,你可以使用 BRECQ 对 MobileNetV2 进行量化,以适应资源受限的环境,同时保持较高的准确率:

python main_imagenet.py --data_path PATH/TO/DATA --arch mobilenetv2 --n_bits_w 2 --channel_wise --weight 0.1

这使得 BRECQ 成为了加速推理速度、降低功耗以及实现模型轻量化部署的理想解决方案。

4、项目特点

  • 创新的量化策略:BRECQ 引入了块重建方法,提高了后训练量化的效果。
  • 多GPU支持:提供多GPU重建代码,以便处理更大规模的模型。
  • 预训练模型:所有预训练模型可通过 torch.hub 加载,易于集成到现有项目中。
  • 易用性:简单的命令行接口使得实验设置快速且直观。

总的来说,BRECQ 是一个强大的工具,为深度学习模型的高效量化提供了新思路。无论是研究者还是开发者,都可以从中受益,构建更高效的量化模型,应用于资源受限的环境中。如果你正在寻求提升量化模型性能的方法,那么 BRECQ 绝对值得一试。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5