首页
/ 🚀 推荐开源项目:Ranger-Deep-Learning-Optimizer

🚀 推荐开源项目:Ranger-Deep-Learning-Optimizer

2024-08-08 10:09:44作者:温玫谨Lighthearted

🚀 推荐开源项目:Ranger-Deep-Learning-Optimizer

在深度学习的浩瀚宇宙中,优化器扮演着至关重要的角色。今天要向大家隆重推荐的是Ranger-Deep-Learning-Optimizer,这是一款结合了RAdam(修正后的Adam)和LookAhead算法优势,并融入了梯度中心化(GC)特性的强大优化器。

项目介绍

Ranger并非简单的聚合体,而是通过精心设计实现RAdam和LookAhead之间的协同效应,为训练过程带来前所未有的效率提升。最新的版本不仅更新了梯度中心化的实现方法至GC2,还移除了PyTorch 1.6中的过时警告,展现了其对技术演进的关注和适应性。

技术解析

Ranger的核心亮点之一是默认启用了Gradient Centralization(GC)。GC可被视为一种带有约束损失函数的投影梯度下降法,使损失函数及其梯度具备更佳的Lipschitz性质,从而提高训练过程的效率和稳定性1。此外,Ranger鼓励用户采用“扁平学习率”策略,在大部分时间维持较高的学习率,最后阶段再逐渐降低,以避免陷入次优解区域。

应用场景及领域

无论是在图像识别、自然语言处理还是其他复杂的机器学习任务中,Ranger都能发挥卓越的表现。特别地,在FastAI竞赛中,Ranger帮助研究者打破了多项记录,超越了传统的AdamW优化器。它还建议搭配Mish激活函数以及特定的学习率曲线,进一步提升了模型性能。

独特功能

  • 定制化初始化:Ranger提供高度定制化选项,允许用户精确控制每一步训练细节。
  • Differential Group Learning Rates:支持不同的学习率组别设置,增加模型调参灵活性。
  • 全面的支持与改进:从安装到使用文档详尽,社区活跃反馈及时,确保开发者能够无缝集成并快速上手。

总之,Ranger不仅仅是一个优化器,它是深度学习领域的一次革新尝试,旨在打破现有瓶颈,引领神经网络训练进入全新纪元。无论是专业研究者还是应用开发人员,Ranger都值得您一试!


参考文献:

获取更多详情,请访问官方GitHub仓库

🔗 Ranger-Deep-Learning-Optimizer


如果您发现Ranger对您的研究或产品产生了正面影响,欢迎引用以下信息以示感谢:

@misc{Ranger,
  author = {Wright, Less},
  title = {Ranger - a synergistic optimizer.},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer}}
}
登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133