AWS Deep Learning Containers发布TensorFlow Graviton推理容器v1.26版本
AWS Deep Learning Containers(DLC)是AWS提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器经过AWS优化,可直接在Amazon EC2、Amazon ECS、Amazon EKS和Amazon SageMaker等服务上运行。
本次发布的v1.26版本主要针对基于Graviton处理器的TensorFlow推理场景进行了优化。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构处理器,在性价比方面具有明显优势。这个版本特别适合需要在ARM架构上运行TensorFlow推理工作负载的用户。
容器镜像详情
本次发布的容器镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境,并集成了TensorFlow Serving API 2.16.1版本。镜像的核心组件包括:
- TensorFlow Serving API 2.16.1:这是Google官方提供的TensorFlow模型服务框架,支持高性能的模型推理
- 关键Python包:包括PyYAML 6.0.2、boto3 1.35.42、Cython 0.29.37等常用工具库
- 系统依赖:包含了libgcc和libstdc++等基础运行时库
技术特点
-
ARM架构优化:该镜像专门为AWS Graviton处理器优化,能够充分发挥ARM架构的性能优势,在推理场景下提供更高的性价比。
-
轻量级设计:基于Ubuntu 20.04的最小化安装,仅包含必要的系统组件和深度学习依赖,保证了容器的高效运行。
-
完整的工具链:预装了从模型服务到AWS集成的全套工具,包括TensorFlow Serving API和AWS CLI等,方便用户直接部署到生产环境。
-
版本兼容性:支持TensorFlow 2.16.x系列,适合需要稳定版本的用户群体。
适用场景
这个版本的DLC特别适合以下场景:
- 需要在AWS Graviton实例上部署TensorFlow模型的用户
- 追求高性价比推理解决方案的企业
- 使用Python 3.10开发环境的机器学习团队
- 需要标准化的模型部署流程的项目
使用建议
对于考虑迁移到Graviton平台的用户,建议先进行性能测试和兼容性验证。虽然该镜像已经过AWS优化,但实际性能表现可能因具体模型和工作负载而异。同时,由于基于ARM架构,需要确保所有自定义的依赖项都有ARM版本支持。
总的来说,这个版本的发布为希望在ARM架构上运行TensorFlow推理的用户提供了一个经过验证的、开箱即用的解决方案,可以显著降低部署深度学习模型的复杂度。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++046Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0290Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选








