AWS Deep Learning Containers发布TensorFlow Graviton推理镜像v1.27
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,让开发者能够快速部署深度学习应用而无需花费大量时间配置环境。这些容器镜像经过AWS优化,可直接在Amazon EC2、Amazon ECS、Amazon EKS和SageMaker等服务上运行。
近日,AWS Deep Learning Containers项目发布了针对TensorFlow框架的新版本推理镜像v1.27,特别优化了基于Graviton处理器的运行环境。这个版本的核心是基于TensorFlow 2.16.1构建的推理专用镜像,支持Python 3.10环境,运行在Ubuntu 20.04操作系统上。
镜像技术细节
该镜像的主要技术特点包括:
-
TensorFlow版本:集成了TensorFlow Serving API 2.16.1版本,这是TensorFlow的稳定发布版本,包含了最新的性能优化和错误修复。
-
处理器架构:专门为AWS Graviton处理器优化。Graviton是AWS基于ARM架构设计的云原生处理器,相比传统x86架构,在性价比方面有显著优势。
-
Python环境:内置Python 3.10运行时环境,这是当前Python的主流稳定版本之一,平衡了新特性和稳定性。
-
操作系统:基于Ubuntu 20.04 LTS构建,这是一个长期支持版本,提供稳定的系统环境和安全更新。
-
依赖管理:镜像中预装了必要的依赖库,包括:
- 核心Python包:PyYAML 6.0.2、boto3 1.35.42、botocore 1.35.42等
- 开发工具:包括emacs编辑器等开发工具
- 系统库:如libgcc-9-dev、libstdc++-9-dev等基础库
使用场景
这个推理专用镜像特别适合以下场景:
-
云端模型服务:在Amazon SageMaker等托管服务上部署训练好的TensorFlow模型,提供低延迟、高并发的推理服务。
-
成本敏感型应用:利用Graviton处理器的成本优势,在保证性能的同时降低推理服务的运营成本。
-
标准化部署:需要快速部署标准化TensorFlow推理环境,避免手动配置各种依赖的复杂过程。
技术优势
相比自行构建容器镜像,使用AWS Deep Learning Containers有以下优势:
-
性能优化:镜像经过AWS专门优化,针对Graviton处理器和TensorFlow框架进行了性能调优。
-
安全性:定期更新基础镜像和安全补丁,减少安全漏洞风险。
-
兼容性保证:所有预装软件版本经过严格测试,确保组件间的兼容性。
-
维护简便:AWS团队负责维护和更新,用户无需关注底层依赖的版本管理。
对于需要在AWS云上部署TensorFlow推理服务的团队,这个预构建的容器镜像可以显著降低运维复杂度,加快服务上线速度,同时获得更好的性价比。特别是对于已经开始采用Graviton处理器的用户,这个优化版本能够充分发挥ARM架构的性能潜力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00