首页
/ AWS Deep Learning Containers发布TensorFlow Graviton推理镜像v1.25

AWS Deep Learning Containers发布TensorFlow Graviton推理镜像v1.25

2025-07-07 20:26:01作者:齐添朝

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架及其依赖项,使开发者能够快速部署深度学习工作负载而无需自行配置环境。该项目为机器学习工程师和数据科学家提供了开箱即用的解决方案,大幅降低了深度学习应用的部署门槛。

近日,AWS Deep Learning Containers项目发布了针对Graviton处理器的TensorFlow推理镜像新版本v1.25。该版本基于TensorFlow 2.16.1框架构建,专为在AWS Graviton处理器上运行推理工作负载而优化。

镜像技术细节

本次发布的镜像采用Ubuntu 20.04作为基础操作系统,支持Python 3.10环境,主要面向CPU推理场景。镜像中预装了TensorFlow Serving API 2.16.1,这是TensorFlow官方提供的用于生产环境部署的高性能服务系统。

在软件包管理方面,镜像同时包含了pip和apt/deb两种包管理系统的关键组件。pip包中包含了数据处理和AWS服务交互的核心库,如NumPy、Pandas、boto3等;系统级依赖则通过apt/deb管理,包括GCC工具链和标准库等基础组件。

性能优化特点

针对Graviton处理器的ARM架构,该镜像进行了深度优化。Graviton是AWS基于ARM架构自主研发的云服务器处理器,相比传统x86架构,在性价比和能效比方面具有显著优势。TensorFlow框架在该处理器上的优化主要包括:

  1. 指令集级别的优化,充分利用ARM NEON等SIMD指令加速矩阵运算
  2. 内存访问模式的优化,适应Graviton处理器的缓存架构
  3. 线程调度优化,匹配Graviton的多核特性

典型应用场景

该推理镜像特别适合以下场景:

  • 需要长期稳定运行的在线推理服务
  • 对成本敏感的中低负载推理应用
  • 需要快速部署的原型验证环境
  • 与AWS其他服务(如SageMaker)集成的推理管道

开发者可以直接使用这些预构建的镜像,省去了从源码编译TensorFlow及其依赖项的复杂过程,同时也能获得针对Graviton处理器的最佳性能表现。

版本兼容性

该镜像属于TensorFlow 2.x系列,保持了与之前2.16版本的API兼容性。对于已经使用TensorFlow 2.16系列的用户,可以无缝迁移到这个优化版本,无需修改现有代码即可获得性能提升。

随着ARM架构在云计算领域的日益普及,AWS通过提供这类针对特定硬件优化的容器镜像,帮助开发者更高效地利用云基础设施,降低总体拥有成本,同时保持应用的性能表现。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
200
279
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
564
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
347
1.34 K
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
110
622