MLRun v1.9.0-rc3版本发布:模型监控与数据库优化升级
MLRun是一个开源的机器学习运维平台,它简化了从数据准备到模型部署的整个机器学习生命周期管理。作为一款功能强大的MLOps工具,MLRun提供了数据管道构建、特征存储、模型训练、部署和监控等全流程支持。
核心功能优化
本次发布的v1.9.0-rc3版本在多个关键组件上进行了重要改进,特别是在模型监控和数据库查询性能方面。
模型监控性能提升
在模型监控方面,开发团队针对流处理pod中的get_model_endpoint调用进行了优化。通过设置tsdb_metrics=false参数,显著提高了端点获取的速度。这一改进对于大规模生产环境尤为重要,能够减少监控延迟,提升系统响应能力。
数据库查询优化
数据库层面对标签查询进行了排序优化,现在标签会按照id进行排序。这一看似简单的改动实际上能够带来更一致的查询结果展示,特别是在UI界面和API响应中,为用户提供更可预测的数据排序体验。
开发环境与依赖更新
Python环境升级
开发团队将Jupyter镜像升级到了Python 3.11版本。这一更新为数据科学家和机器学习工程师提供了最新的Python特性支持,同时也能带来性能上的提升。Python 3.11相比之前版本在运行速度上有显著改进,这对于交互式开发和实验尤为重要。
依赖库更新
Storey库作为MLRun的重要依赖组件,在此版本中得到了更新。Storey是一个流处理框架,在特征工程和实时数据处理中扮演关键角色。通过保持依赖库的最新版本,MLRun能够获得更好的性能、安全性和功能支持。
文档完善
本次版本还完善了API文档,特别是对set_flow()方法的文档补充。良好的文档是开源项目成功的关键因素之一,能够帮助开发者更快上手并正确使用系统功能。
测试与稳定性
在测试方面,团队修复了特征存储系统测试中的问题,确保系统在复杂场景下的稳定运行。完善的测试体系是MLRun能够保持高质量的关键保障。
总结
MLRun v1.9.0-rc3版本虽然在功能上没有引入重大变更,但在性能优化、开发体验和系统稳定性方面做出了重要改进。这些看似细微的调整实际上对生产环境的稳定运行和开发效率有着深远影响。对于已经在使用MLRun的用户,建议评估升级此版本以获得更好的性能和稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00