MLRun v1.9.0-rc4版本发布:模型监控与性能优化
项目简介
MLRun是一个开源的机器学习运维(MLOps)框架,它简化了机器学习项目从开发到生产部署的全生命周期管理。通过提供统一的接口和工具链,MLRun帮助数据科学家和工程师更高效地构建、部署和监控机器学习模型。
核心特性更新
模型监控功能增强
本次发布的v1.9.0-rc4版本在模型监控方面进行了多项改进。首先移除了对taoswrap的依赖,这简化了监控组件的部署和维护。其次,现在支持在获取或列出模型端点时指定要返回的时序数据库(TSDB)指标列表,这为用户提供了更灵活的监控数据查询能力。
监控参数命名也进行了规范化调整,使其更符合项目整体命名约定,提高了API的一致性。这些改进使得模型监控功能更加稳定和易用。
性能优化
在性能方面,本次更新对模型端点的Pydantic模型构建过程进行了优化。Pydantic是一个流行的Python数据验证库,优化其模型构建过程可以显著提升API响应速度,特别是在处理大量模型端点时。
此外,Nuclio调用日志的详细程度已调整为调试级别,减少了生产环境中不必要的日志输出,有助于降低系统负载和提高日志可读性。
功能改进
制品管理增强
制品列表功能得到了多项改进。现在当列出制品时,"latest"标签会被优先显示,这符合用户对最新版本制品的查找习惯。修复了在使用标签排序时可能出现的问题,并解决了当同时使用partition_by和limit参数时的排序错误。
值得注意的是,SDK中已弃用列出制品时的limit参数,开发者应使用其他分页机制来替代这一功能。
通知系统修复
Webhook通知功能得到了修复,解决了双重序列化JSON体的问题,并确保日期时间能够正确序列化。这些修复保证了通知系统在各种情况下的可靠性。
开发体验优化
依赖管理
项目对Python包管理器pip的版本进行了限制(25.0.x),并移除了ensurepip文件夹,这些改动提高了开发环境的稳定性。自动化构建流程也进行了相应调整,确保测试能够顺利通过。
Go语言相关依赖包也进行了升级,保持与最新安全补丁和功能改进同步。
测试稳定性
禁用了假设(hypothesis)健康检查,解决了持续集成环境中可能出现的测试失败问题。这一调整提高了自动化测试的可靠性。
容器镜像优化
Jupyter CE容器镜像移除了不再支持的教程内容,精简了镜像体积。这一优化减少了部署所需的时间和资源消耗。
总结
MLRun v1.9.0-rc4版本聚焦于模型监控功能的完善和系统性能的优化,同时改进了制品管理和通知系统。这些改进使得MLRun作为MLOps平台更加成熟稳定,能够更好地支持企业级机器学习项目的全生命周期管理。对于正在使用或考虑采用MLRun的团队来说,这个版本值得关注和评估。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00