Apache DataFusion聚合执行任务无法取消问题分析
Apache DataFusion是一个高性能的查询引擎,但在其聚合执行(AggregateExec)的实现中存在一个关键问题:聚合操作无法被及时取消。这个问题在用户尝试中断长时间运行的聚合查询时尤为明显。
问题本质
DataFusion的AggregateExec在执行聚合操作时,其内部流(stream)实现会在一个循环中持续消费输入数据,而不会主动让出(yield)执行权。当输入源是文件等不会返回Pending状态的流时,Tokio运行时将没有机会中止正在运行的任务。
这个问题通常被查询计划中的CoalesceExec所掩盖,因为CoalesceExec会在单独的任务中运行聚合操作。虽然CoalesceExec使用的RecordBatchReceiverStream确实会返回Pending状态,使得它本身可以被取消,但实际聚合任务的停止仍然需要等待Tokio能够获得执行权。
问题复现
要复现这个问题,可以按照以下步骤操作:
- 启动datafusion-cli
- 执行
SET datafusion.execution.target_partitions = 1; - 在一个较大的表上执行
SELECT sum(column) from table; - 尝试使用Ctrl-C取消查询
预期行为是查询应该立即停止,但实际行为是查询会继续执行直到完成。
技术分析
问题的核心在于DataFusion的流处理模型与Tokio任务调度的交互方式。在Tokio的异步模型中,任务只能在显式让出执行权时才能被取消。当AggregateExec的实现持续处理数据而不让出执行权时,即使外部触发了取消操作,Tokio也无法立即中断任务。
这个问题在单线程运行时尤为明显,因为此时没有其他任务可以抢占执行权。在多线程运行时,虽然其他任务可以继续执行,但聚合任务本身仍然会消耗CPU资源直到完成。
解决方案
解决这个问题的关键在于在聚合操作的执行流中定期插入让出点(yield point)。目前社区提出了几种解决方案:
- 在AggregateExec的输入流中包装一个定期让出的适配器,例如每处理64个批次后让出一次
- 修改CoalescePartitionExec,使其在单分区情况下也使用任务分离的方式执行
- 在查询执行的顶层添加取消检查点
这些解决方案都需要在保证查询性能不受显著影响的前提下,提供及时取消的能力。性能测试表明,合理的让出频率对查询性能的影响可以控制在可接受范围内。
影响范围
这个问题不仅影响命令行工具的交互体验,还会影响所有通过编程接口使用DataFusion的场景。例如:
- Java应用通过JNI调用DataFusion时无法及时取消查询
- gRPC服务端处理客户端断开连接时无法及时终止查询
- 任何需要设置查询超时的场景
结论
DataFusion的聚合执行取消问题是一个典型的异步任务管理挑战。通过合理地在执行流中插入让出点,可以在保持高性能的同时提供良好的取消支持。这个问题也提醒我们在设计流处理系统时,需要考虑任务管理的各个方面,包括但不限于性能、资源使用和用户交互体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00