Apache DataFusion聚合执行任务无法取消问题分析
Apache DataFusion是一个高性能的查询引擎,但在其聚合执行(AggregateExec)的实现中存在一个关键问题:聚合操作无法被及时取消。这个问题在用户尝试中断长时间运行的聚合查询时尤为明显。
问题本质
DataFusion的AggregateExec在执行聚合操作时,其内部流(stream)实现会在一个循环中持续消费输入数据,而不会主动让出(yield)执行权。当输入源是文件等不会返回Pending状态的流时,Tokio运行时将没有机会中止正在运行的任务。
这个问题通常被查询计划中的CoalesceExec所掩盖,因为CoalesceExec会在单独的任务中运行聚合操作。虽然CoalesceExec使用的RecordBatchReceiverStream确实会返回Pending状态,使得它本身可以被取消,但实际聚合任务的停止仍然需要等待Tokio能够获得执行权。
问题复现
要复现这个问题,可以按照以下步骤操作:
- 启动datafusion-cli
- 执行
SET datafusion.execution.target_partitions = 1; - 在一个较大的表上执行
SELECT sum(column) from table; - 尝试使用Ctrl-C取消查询
预期行为是查询应该立即停止,但实际行为是查询会继续执行直到完成。
技术分析
问题的核心在于DataFusion的流处理模型与Tokio任务调度的交互方式。在Tokio的异步模型中,任务只能在显式让出执行权时才能被取消。当AggregateExec的实现持续处理数据而不让出执行权时,即使外部触发了取消操作,Tokio也无法立即中断任务。
这个问题在单线程运行时尤为明显,因为此时没有其他任务可以抢占执行权。在多线程运行时,虽然其他任务可以继续执行,但聚合任务本身仍然会消耗CPU资源直到完成。
解决方案
解决这个问题的关键在于在聚合操作的执行流中定期插入让出点(yield point)。目前社区提出了几种解决方案:
- 在AggregateExec的输入流中包装一个定期让出的适配器,例如每处理64个批次后让出一次
- 修改CoalescePartitionExec,使其在单分区情况下也使用任务分离的方式执行
- 在查询执行的顶层添加取消检查点
这些解决方案都需要在保证查询性能不受显著影响的前提下,提供及时取消的能力。性能测试表明,合理的让出频率对查询性能的影响可以控制在可接受范围内。
影响范围
这个问题不仅影响命令行工具的交互体验,还会影响所有通过编程接口使用DataFusion的场景。例如:
- Java应用通过JNI调用DataFusion时无法及时取消查询
- gRPC服务端处理客户端断开连接时无法及时终止查询
- 任何需要设置查询超时的场景
结论
DataFusion的聚合执行取消问题是一个典型的异步任务管理挑战。通过合理地在执行流中插入让出点,可以在保持高性能的同时提供良好的取消支持。这个问题也提醒我们在设计流处理系统时,需要考虑任务管理的各个方面,包括但不限于性能、资源使用和用户交互体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00