LangFlow项目中使用Ollama本地LLM的Monkey Patch实现
2025-04-30 21:02:18作者:霍妲思
在LangFlow项目中集成本地运行的Ollama大语言模型时,开发者D3adP33ngv33n分享了一种巧妙的Monkey Patch解决方案。这种方法绕过了直接使用OpenAI API的需求,为希望在本地环境中运行LLM的用户提供了实用参考。
技术背景
LangFlow是一个基于流程的AI开发框架,默认情况下设计为与OpenAI等云服务API交互。然而,许多开发者出于隐私、成本或网络限制等原因,更倾向于使用本地部署的大语言模型。Ollama作为一个支持本地运行的LLM框架,成为理想选择。
核心实现方案
该方案的核心在于通过Python的Monkey Patch技术,动态替换LangFlow内部使用的litellm.completion函数。具体实现分为两个关键部分:
- 自定义completion函数:
def custom_completion(*args, **kwargs):
messages = kwargs.get("messages", [])
prompt = messages[0].get("content", "") if messages else ""
response_text = query_ollama(prompt)
return SimpleNamespace(choices=[SimpleNamespace(message=SimpleNamespace(content=response_text))])
litellm.completion = custom_completion
这个函数拦截所有LLM调用请求,提取提示词内容后转发给本地Ollama实例,并返回符合LangFlow预期的响应格式。
- OllamaLLM适配器类:
class OllamaLLM(LLM):
def __init__(self, use_gpu=True):
super().__init__(model=OLLAMA_MODEL)
self.use_gpu = use_gpu
def complete(self, prompt):
return litellm.completion(model=OLLAMA_MODEL, messages=[{"role": "user", "content": prompt}])
这个类继承自LangFlow的基础LLM类,提供了标准化的接口,确保与框架其他组件的兼容性。
技术细节解析
-
Monkey Patch机制:Python的动态特性允许运行时替换模块、类或函数。这里巧妙地替换了litellm.completion,使其成为与本地Ollama交互的桥梁。
-
响应格式适配:使用SimpleNamespace构造与OpenAI API兼容的响应结构,确保LangFlow后续处理逻辑无需修改。
-
GPU支持选项:在OllamaLLM类中保留了use_gpu参数,为后续可能的性能优化留出空间。
实际应用价值
这种方案特别适合以下场景:
- 开发测试环境需要隔离外部网络依赖
- 处理敏感数据时要求完全本地化处理
- 需要长期稳定运行而不受API配额限制
- 希望节省云API调用成本的项目
扩展思考
虽然Monkey Patch提供了快速解决方案,但在生产环境中,更推荐通过以下方式增强稳定性:
- 实现完整的LLM接口适配层
- 增加错误处理和重试机制
- 添加本地模型加载状态检查
- 实现性能监控和日志记录
这种技术方案展示了LangFlow框架的灵活性和扩展性,为开发者提供了在多样化环境中部署AI应用的可行路径。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1