LangFlow项目中使用Ollama本地LLM的Monkey Patch实现
2025-04-30 04:18:14作者:霍妲思
在LangFlow项目中集成本地运行的Ollama大语言模型时,开发者D3adP33ngv33n分享了一种巧妙的Monkey Patch解决方案。这种方法绕过了直接使用OpenAI API的需求,为希望在本地环境中运行LLM的用户提供了实用参考。
技术背景
LangFlow是一个基于流程的AI开发框架,默认情况下设计为与OpenAI等云服务API交互。然而,许多开发者出于隐私、成本或网络限制等原因,更倾向于使用本地部署的大语言模型。Ollama作为一个支持本地运行的LLM框架,成为理想选择。
核心实现方案
该方案的核心在于通过Python的Monkey Patch技术,动态替换LangFlow内部使用的litellm.completion函数。具体实现分为两个关键部分:
- 自定义completion函数:
def custom_completion(*args, **kwargs):
messages = kwargs.get("messages", [])
prompt = messages[0].get("content", "") if messages else ""
response_text = query_ollama(prompt)
return SimpleNamespace(choices=[SimpleNamespace(message=SimpleNamespace(content=response_text))])
litellm.completion = custom_completion
这个函数拦截所有LLM调用请求,提取提示词内容后转发给本地Ollama实例,并返回符合LangFlow预期的响应格式。
- OllamaLLM适配器类:
class OllamaLLM(LLM):
def __init__(self, use_gpu=True):
super().__init__(model=OLLAMA_MODEL)
self.use_gpu = use_gpu
def complete(self, prompt):
return litellm.completion(model=OLLAMA_MODEL, messages=[{"role": "user", "content": prompt}])
这个类继承自LangFlow的基础LLM类,提供了标准化的接口,确保与框架其他组件的兼容性。
技术细节解析
-
Monkey Patch机制:Python的动态特性允许运行时替换模块、类或函数。这里巧妙地替换了litellm.completion,使其成为与本地Ollama交互的桥梁。
-
响应格式适配:使用SimpleNamespace构造与OpenAI API兼容的响应结构,确保LangFlow后续处理逻辑无需修改。
-
GPU支持选项:在OllamaLLM类中保留了use_gpu参数,为后续可能的性能优化留出空间。
实际应用价值
这种方案特别适合以下场景:
- 开发测试环境需要隔离外部网络依赖
- 处理敏感数据时要求完全本地化处理
- 需要长期稳定运行而不受API配额限制
- 希望节省云API调用成本的项目
扩展思考
虽然Monkey Patch提供了快速解决方案,但在生产环境中,更推荐通过以下方式增强稳定性:
- 实现完整的LLM接口适配层
- 增加错误处理和重试机制
- 添加本地模型加载状态检查
- 实现性能监控和日志记录
这种技术方案展示了LangFlow框架的灵活性和扩展性,为开发者提供了在多样化环境中部署AI应用的可行路径。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355